Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 8
186
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of different carbon sources on biofouling in membrane fouling simulators: microbial community and implications

, , &
Pages 747-763 | Received 17 Dec 2021, Accepted 13 Sep 2022, Published online: 12 Oct 2022

References

  • Ayache C, Manes C, Pidou M, Croue JP, Gernjak W. 2013. Microbial community analysis of fouled reverse osmosis membranes used in water recycling. Water Res. 47:3291–3299. doi:10.1016/j.watres.2013.03.006
  • Belila A, El-Chakhtoura J, Otaibi N, Muyzer G, Gonzalez-Gil G, Saikaly PE, van Loosdrecht MCM, Vrouwenvelder JS. 2016. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production. Water Res. 94:62–72. doi:10.1016/j.watres.2016.02.039
  • Bereschenko LA, Stams AJ, Euverink GJ, van Loosdrecht MC. 2010. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp. Appl Environ Microbiol. 76:2623–2632. doi:10.1128/AEM.01998-09
  • Bond RJ, Hansel CM, Voelker BM. 2020. Heterotrophic bacteria exhibit a wide range of rates of extracellular production and decay of hydrogen peroxide. Front Mar Sci. 7:72.
  • de Vries HJ, Kleibusch E, Hermes GDA, van den Brink P, Plugge CM. 2021. Biofouling control: The impact of biofilm dispersal and membrane flushing. Water Res. 198:117163. doi:10.1016/j.watres.2021.117163
  • Dreszer C, Flemming HC, Zwijnenburg A, Kruithof JC, Vrouwenvelder JS. 2014. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient. Water Res. 50:200–211. doi:10.1016/j.watres.2013.11.024
  • Dreszer C, Vrouwenvelder JS, Paulitsch-Fuchs AH, Zwijnenburg A, Kruithof JC, Flemming HC. 2013. Hydraulic resistance of biofilms. J Membr Sci. 429:436–447. doi:10.1016/j.memsci.2012.11.030
  • DuPont 2020. Water chemistry and pretreatment - fouling prevention.
  • Enjalbert B, Cocaign-Bousquet M, Portais J-C, Letisse F. 2015. Acetate exposure determines the diauxic behavior of escherichia coli during the glucose-acetate transition. J Bacteriol. 197:3173–3181. doi:10.1128/JB.00128-15
  • Erttmann SF, Gekara NO. 2019. Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat Commun. 10:3493. doi:10.1038/s41467-019-11169-x
  • Fagerbakke KM, Heldal M, Norland S. 1996. Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol. 10:15–27. doi:10.3354/ame010015
  • Farhat NM, Javier L, Van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. 2019. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. Water Res. 150:1–11. doi:10.1016/j.watres.2018.11.054
  • Flemming HC. 2002. Biofouling in water systems–cases, causes and countermeasures. Appl Microbiol Biotechnol. 59:629–640. doi:10.1007/s00253-002-1066-9
  • Flemming H-C. 2020. Biofouling and me: My Stockholm syndrome with biofilms. Water Res. 173:115576. doi:10.1016/j.watres.2020.115576
  • Guo H, Felz S, Li Y, Lier J, Kreuk M. 2020. Structural extracellular polymeric substances determine the difference in digestibility between waste activated sludge and aerobic granules. Water Res. 181:115924. doi:10.1016/j.watres.2020.115924
  • Guo Y, Li T-y, Xiao K, Wang X-m, Xie YF. 2020. Key foulants and their interactive effect in organic fouling of nanofiltration membranes. J Membr Sci. 610:118252. doi:10.1016/j.memsci.2020.118252
  • Haaksman VA, Siddiqui A, Schellenberg C, Kidwell J, Vrouwenvelder JS, Picioreanu C. 2017. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography. J Membr Sci. 522:124–139. doi:10.1016/j.memsci.2016.09.005
  • Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S. 2000. Experimental reproducibility in flow-chamber biofilms. Microbiology. 146:2409–2415. doi:10.1099/00221287-146-10-2409
  • Hiemstra P, Paassen J, Rietman B, Verdouw J. 1997. Aerobic versus anaerobic nanofiltration fouling of membranes. In Proceedings of the AWWA Membrane Conference; 28 February–3 March 1999; Long Beach (CA). Vol. 28.
  • Hijnen W, Biraud D, Cornelissen E, Kooij D. 2009. Threshold concentration of easily assimilable organic carbon in feedwater for biofouling of spiral-wound membranes. Environ Sci Technol. 43:4890–4895. doi:10.1021/es900037x
  • Houari A, Seyer D, Kecili K, Heim V, Martino PD. 2013. Kinetic development of biofilm on NF membranes at the Mery-sur-Oise plant, France. Biofouling. 29:109–118. doi:10.1080/08927014.2012.752464
  • Huang S, Voutchkov N, Jiang S. 2019. Balancing carbon, nitrogen and phosphorus concentration in seawater as a strategy to prevent accelerated membrane biofouling. Water Res. 165:114978. doi:10.1016/j.watres.2019.114978
  • Inaba T, Hori T, Aizawa H, Sato Y, Ogata A, Habe H. 2018. Microbiomes and chemical components of feed water and membrane-attached biofilm in reverse osmosis system to treat membrane bioreactor effluents. Sci Rep. 8:16805. doi:10.1038/s41598-018-35156-2
  • Javier L, Farhat NM, Vrouwenvelder JS. 2021. Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems. Water Res X. 10:100085. doi:10.1016/j.wroa.2020.100085
  • Kerdi S, Qamar A, Vrouwenvelder JS, Ghaffour N. 2021. Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel. Water Res. 188:116502. doi:10.1016/j.watres.2020.116502
  • Khan MT, Busch M, Molina VG, Emwas AH, Aubry C, Croue JP. 2014. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Water Res. 59:271–282. doi:10.1016/j.watres.2014.04.020
  • Kim LH, Nava-Ocampo M, van Loosdrecht MC, Kruithof JC, Vrouwenvelder JS. 2018. The membrane fouling simulator: development, application, and early-warning of biofouling in RO treatment. Desal Water Treat. 126:1–23. doi:10.5004/dwt.2018.23081
  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol. 36:1202–1211. doi:10.1021/es011055j
  • Krsmanovic M, Biswas D, Ali H, Kumar A, Ghosh R, Dickerson AK. 2021. Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci. 288:102336. doi:10.1016/j.cis.2020.102336
  • Lewandowski Z, Beyenal H. 2005. Biofilms: their structure, activity, and effect on membrane filtration. Water Sci Technol. 51:181–192. doi:10.2166/wst.2005.0637
  • Lewandowski Z, Beyenal H, Stookey D. 2004. Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Sci Technol. 49:359–364. doi:10.2166/wst.2004.0880
  • Li M, Yang Q, Fang G, Huang H. 2022. Refractory fluorescent dissolved organic matter in conventional and membrane-based drinking water treatment processes. Chemosphere. 293:133698. doi:10.1016/j.chemosphere.2022.133698.
  • Liu T, Chen Z-L, Yu W-Z, You S-J. 2011. Characterization of organic membrane foulants in a submerged membrane bioreactor with preozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. Water Res. 45:2111–2121. doi:10.1016/j.watres.2010.12.023
  • Liu D, Cabrera J, Zhong L, Wang W, Duan D, Wang X, Liu S, Xie YF. 2020. Using loose nanofiltration membrane for lake water treatment: a pilot study. Front Environ Sci Eng. 15:69. doi:10.1007/s11783-020-1362-6
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275.
  • Mengya L, Qing Y. 2022. Refractory fluorescent dissolved organic matter in conventional and membrane-based drinking water treatment processes. Chemosphere. 293: 133698. doi: j.chemosphere.2022.133698
  • Miettinen IT, Vartiainen T, Martikainen PJ. 1997. Phosphorus and bacterial growth in drinking water. Appl Environ Microbiol. 63:3242–3245. doi:10.1128/aem.63.8.3242-3245.1997
  • Motiei A, Brindefalk B, Ogonowski M, El-Shehawy R, Pastuszek P, Ek K, Liewenborg B, Udekwu K, Gorokhova E. 2020. Principle Coordinate Analysis (PCoA) based on Bray Curtis dissimilarity metrics, showing the distance in the bacterial communities between the treatments. PLoS One. doi:10.1371/journal.pone.0214833.g004
  • Nagaraj V, Skillman L, Ho G, Li D, Gofton A. 2017. Characterisation and comparison of bacterial communities on reverse osmosis membranes of a full-scale desalination plant by bacterial 16S rRNA gene metabarcoding. NPJ Biofilms Microbiomes. 3:13. doi:10.1038/s41522-017-0021-6
  • Park JW, Lee YJ, Meyer AS, Douterelo I, Maeng SK. 2018. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. Water Res. 144:36–45. doi:10.1016/j.watres.2018.07.027
  • Paula AJ, Hwang G, Koo H. 2020. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization. Nat Commun. 11:1354. doi:10.1038/s41467-020-15165-4
  • Sánchez O. 2018. Microbial diversity in biofilms from reverse osmosis membranes: a short review. J Membr Sci. 545:240–249. doi:10.1016/j.memsci.2017.09.082
  • Schäfer AI, Andritsos N, Karabelas AJ, Hoek EMV, Schneider R. 2004. Fouling in nanofiltration. In Nanofiltration – principles and applications. Elsevier.
  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi:10.1186/gb-2011-12-6-r60
  • Siddiqui A. 2016. Biofouling control in spiral-wound membrane systems: Impact of feed spacer modification and biocides [dissertation]. Saudi Arabia: King Abdullah University of Science and Technology.
  • Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, et al. 2017. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Water Res. 110:281–287. doi:10.1016/j.watres.2016.12.034
  • Siddiqui A, Pinel I, Prest EI, Bucs S, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. 2017. Application of DBNPA dosage for biofouling control in spiral wound membrane systems. Desal Water Treat. 68:12–22. doi:10.5004/dwt.2017.20370
  • Sousi M, Liu G, Salinas-Rodriguez SG, Knezev A, Blankert B, Schippers JC, van der Meer W, Kennedy MD. 2018. Further developing the bacterial growth potential method for ultra-pure drinking water produced by remineralization of reverse osmosis permeate. Water Res. 145:687–696. doi:10.1016/j.watres.2018.09.002
  • Sousi M, Salinas-Rodriguez SG, Liu G, Dusseldorp J, Kemperman AJB, Schippers JC, Van der Meer WGJ, Kennedy MD. 2021. Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate. Water Res. 203:117506. doi:10.1016/j.watres.2021.117506
  • Sousi M, Salinas-Rodriguez SG, Liu G, Schippers JC, Kennedy MD, van der Meer W. 2020. Measuring bacterial growth potential of ultra-low nutrient drinking water produced by reverse osmosis: Effect of sample pre-treatment and bacterial inoculum. Front Microbiol. 11:791. doi:10.3389/fmicb.2020.00791
  • Ventresque C, Gisclon V, Bablon G, Chagneau G. 2000. An outstanding feat of modem technology: the Mery-sur-Oise Nanofiltration Treatment Plant (340,000 m3/d). Desalination. 131:1–16. doi:10.1016/S0011-9164(00)90001-8
  • Villacorte LO, Ekowati Y, Calix-Ponce HN, Kisielius V, Kleijn JM, Vrouwenvelder JS, Schippers JC, Kennedy MD. 2017. Biofouling in capillary and spiral wound membranes facilitated by marine algal bloom. Desalination. 424:74–84. doi:10.1016/j.desal.2017.09.035
  • Vries H, Beyer F, Jarzembowska M, Lipińska J, Brink P, Zwijnenburg A, Timmers PHA, Stams AJM, Plugge CM. 2019. Isolation and characterization of Sphingomonadaceae from fouled membranes. NPJ Biofilms Microbiomes. 5:6. doi:10.1038/s41522-018-0074-1
  • Vrouwenvelder JS, Bakker SM, Wessels LP, van Paassen JAM. 2007. The membrane fouling simulator as a new tool for biofouling control of spiral-wound membranes. Desalination. 204:170–174. doi:10.1016/j.desal.2006.04.028
  • Vrouwenvelder JS, Beyer F, Dahmani K, Hasan N, Galjaard G, Kruithof JC, Van Loosdrecht MC. 2010. Phosphate limitation to control biofouling. Water Res. 44:3454–3466. doi:10.1016/j.watres.2010.03.026
  • Vrouwenvelder JS, Buiter J, Riviere M, van der Meer WG, van Loosdrecht MC, Kruithof JC. 2010. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Water Res. 44:689–702. doi:10.1016/j.watres.2009.09.054
  • Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MCM. 2009. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem. Water Res. 43:583–594. doi:10.1016/j.watres.2008.11.019
  • Vrouwenvelder JS, Hinrichs C, Sun AR, Royer F, van Paassen JAM, Bakker SM, van der Meer WGJ, Kruithof JC, van Loosdrecht MCM. 2008. Monitoring and control of biofouling in nanofiltration and reverse osmosis membranes. Water Sci Technol: Water Supply. 8:449–458. doi:10.2166/ws.2008.091
  • Vrouwenvelder JS, van Loosdrecht MCM, Kruithof JC. 2011. Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalination. 265:206–212. doi:10.1016/j.desal.2010.07.053
  • Vrouwenvelder JS, van Paassen JAM, Kruithof JC, van Loosdrecht MCM. 2009. Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection. J Membr Sci. 338:92–99. doi:10.1016/j.memsci.2009.04.016
  • Vrouwenvelder J, Vanpaassen J, Wessels L, Vandam A, Bakker S. 2006. The membrane fouling simulator: A practical tool for fouling prediction and control. J Membr Sci. 281:316–324. doi:10.1016/j.memsci.2006.03.046
  • Wang X, Xia K, Yang X, Tang C. 2019. Growth strategy of microbes on mixed carbon sources. Nat Commun. 10:1279. doi:10.1038/s41467-019-09261-3
  • Wang X, Yang H, Li Z, Yang S, Xie Y. 2015. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems. Front Environ Sci Eng. 9:155–163. doi:10.1007/s11783-014-0740-3
  • Weinrich LA, Giraldo E, Lechevallier MW. 2009. Development and application of a bioluminescence-based test for assimilable organic carbon in reclaimed waters. Appl Environ Microbiol. 75:7385–7390. doi:10.1128/AEM.01728-09
  • Weinrich LA, Schneider OD, LeChevallier MW. 2011. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination. Appl Environ Microbiol. 77:1148–1150. doi:10.1128/AEM.01829-10
  • Weinrich L. 2015. The impact of assimilable organic carbon on biological fouling of reverse osmosis membranes in seawater desalination [dissertation]. Philadelphia (PA): Drexel University.
  • Weinrich L, Haas CN, LeChevallier MW. 2013. Recent advances in measuring and modeling reverse osmosis membrane fouling in seawater desalination: a review. J Water Reuse Desalin. 3:85–101. doi:10.2166/wrd.2013.056
  • Weinrich L, LeChevallier M, Haas CN. 2016. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment. Water Res. 101:203–213. doi:10.1016/j.watres.2016.05.075
  • Xiao K, Liang S, Xiao A, Lei T, Tan J, Wang X, Huang X. 2018. Fluorescence quotient of excitation–emission matrices as a potential indicator of organic matter behavior in membrane bioreactors. Environ Sci: Water Res Technol. 4:281–290. doi:10.1039/C7EW00270J
  • Xiao K, Shen Y, Sun J, Liang S, Fan H, Tan J, Wang X, Huang X, Waite TD. 2018. Correlating fluorescence spectral properties with DOM molecular weight and size distribution in wastewater treatment systems. Environ Sci: Water Res Technol. 4:1933–1943. doi:10.1039/C8EW00504D
  • Yao Y, Pu Y, Ngan WY, Kan K, Pan J, Li M, Habimana O. 2020. Effects of sodium citrate on the structure and microbial community composition of an early-stage multispecies biofilm model. Sci Rep. 10:16585. doi:10.1038/s41598-020-73731-8
  • Yu T, Sun H, Chen Z, Wang Y-H, Huo Z-Y, Ikuno N, Ishii K, Jin Y, Hu H-Y, Wu Y-H, et al. 2018. Different bacterial species and their extracellular polymeric substances (EPSs) significantly affected reverse osmosis (RO) membrane fouling potentials in wastewater reclamation. Sci Total Environ. 644:486–493. doi:10.1016/j.scitotenv.2018.06.286
  • Yu J, Xiao K, Xue W. 2020. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Front Environ Sci Eng. 14: 31. doi: 10.1007/s11783-019-1210-8
  • Zodrow KR, Bar-Zeev E, Giannetto MJ, Elimelech M. 2014. Biofouling and microbial communities in membrane distillation and reverse osmosis. Environ Sci Technol. 48:13155–13164. doi:10.1021/es503051t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.