Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 8
330
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact of sodium nitroprusside concentration added to batch cultures of Escherichia coli biofilms on the c-di-GMP levels, morphologies and adhesion of biofilm-dispersed cells

ORCID Icon & ORCID Icon
Pages 796-813 | Received 01 Apr 2022, Accepted 28 Sep 2022, Published online: 13 Oct 2022

References

  • Abu-Lail NI, Camesano TA. 2003. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ Sci Technol. 37:2173–2183. doi:10.1021/es026159o
  • Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B. 2004. A live bioprobe for studying diatomsurface interactions. Biophys J. 87:4284–4297. doi:10.1529/biophysj.104.043307
  • Auer GK, Weibel DB. 2017. Bacterial cell mechanics. Biochemistry. 56:3710–3724. doi:10.1021/acs.biochem.7b00346
  • Alsteens D, Gaub HE, Newton R, Pfreundschuh M, Gerber C, Müller DJ. 2017. Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater. 2:17008.
  • Barnes RJ, Bandi RR, Wong WS, Barraud N, McDougald D, Fane A, Kjelleberg S, Rice SA. 2013. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. Biofouling. 29:203–212. doi:10.1080/08927014.2012.760069
  • Barnes RJ, Low JH, Bandi RR, Tay M, Chua F, Aung T, Fane AG, Kjelleberg S, Rice SA. 2015. Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl Environ Microbiol. 81:2515–2524. doi:10.1128/AEM.03404-14
  • Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 188:7344–7353. doi:10.1128/JB.00779-06
  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. 2009a. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 191:7333–7342. doi:10.1128/JB.00975-09
  • Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S. 2009b. Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol. 2:370–378. doi:10.1111/j.1751-7915.2009.00098.x
  • Barraud N, Kelso MJ, Rice SA, Kjelleberg S. 2015. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 21:31–42. doi:10.2174/1381612820666140905112822
  • Bashiri S, Lucidi M, Visaggio D, Capecchi G, Persichetti L, Cincotti G, Visca P, Capellini G. 2021. Growth phase- and desiccation-dependent Acinetobacter baumannii morphology: an atomic force microscopy investigation. Langmuir. 37:1110–1119. doi:10.1021/acs.langmuir.0c02980
  • Borer B, Tecon R, Or D. 2018. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat Commun. 9:769.
  • Bradley SA, Steinert JR. 2015. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods. 245:116–124. doi:10.1016/j.jneumeth.2015.02.024
  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 27:1017–1032. doi:10.1080/08927014.2011.626899
  • Brunelli L, Crow JP, Beckman JS. 1995. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 316:327–334. doi:10.1006/abbi.1995.1044
  • Chambers JR, Cherny KE, Sauer K. 2017. Susceptibility of Pseudomonas aeruginosa dispersed cells to antimicrobial agents is dependent on the dispersion cue and class of the antimicrobial agent used. Antimicrob Agents Chemother. 61:e00846–17. doi:10.1128/AAC.00846-17
  • Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Kjelleberg S, Tolker Nielsen T, Givskov M, Yang L. 2014. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 5:4462. doi:10.1038/ncomms5462
  • Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2:114–122. doi:10.1038/nrd1008
  • Deliorman M, Gordesli Duatepe FP, Davenport EK, Fransson BA, Call DR, Beyenal H, Abu-Lail NI. 2019. Responses of Acinetobacter baumannii bound and loose extracellular polymeric substances to hyperosmotic agents combined with or without tobramycin: an atomic force microscopy study. Langmuir. 35:9071–9083. doi:10.1021/acs.langmuir.9b01227
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881–890. doi:10.3201/eid0809.020063
  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR. 2008. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir. 24:4944–4951. doi:10.1021/la7035295
  • Dufrêne YF. 2015. Sticky microbes: forces in microbial cell adhesion. Trends Microbiol. 23:376–382. doi:10.1016/j.tim.2015.01.011
  • El-Kirat-Chatel S, Puymege A, Duong TH, Overtvelt PV, Bressy C, Belec L, Dufrêne YF, Molmeret M. 2017. Phenotypic heterogeneity in attachment of marine bacteria toward antifouling copolymers unraveled by AFM. Front Microbiol. 8:1399.
  • Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. 2018. Biofilms in the food industry: health aspects and control methods. Front Microbiol. 9:898. doi:10.3389/fmicb.2018.00898
  • Gordesli FP, Abu-Lail NI. 2012a. The role of growth temperature in the adhesion and mechanics of pathogenic L monocytogenes: an AFM study. Langmuir. 28:1360–1373. doi:10.1021/la203639k
  • Gordesli FP, Abu-Lail NI. 2012b. Combined Poisson and soft-particle DLVO analysis of the specificity of the L monocytogenes nanoscale adhesion forces measured at varying temperatures of growth. Environ Sci Technol. 46:10089–10098. doi:10.1021/es300653w
  • Gordesli FP, Abu-Lail NI. 2012c. Impact of ionic strength of growth on the physiochemical properties, structure, and adhesion of Listeria monocytogenes polyelectrolyte brushes to a silicon nitride surface in water. J Colloid Interface Sci. 388:257–67267.
  • Gordesli-Duatepe FP, Park BJ, Kawas LH, Abu-Lail NI. 2020. Atomic force microscopy investigation of the contributions of Listeria monocytogenes cell-wall biomacromolecules to their adherence and mechanics. J Phys Chem B. 124:5872–5883. doi:10.1021/acs.jpcb.0c04025
  • Guilhen C, Miquel S, Charbonnel N, Joseph L, Carrier G, Forestier C, Balestrino D. 2019. Colonization and immune modulation properties of Klebsiella pneumoniae biofilm-dispersed cells. NPJ Biofilms Microbiomes. 5:25. doi:10.1038/s41522-019-0098-1
  • Hall-Stoodley L, Costerton J, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2:95–108. doi:10.1038/nrmicro821
  • Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, Fernandez BO, Barraud N, Bruce KD, Jefferies J, et al. 2017. Low dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther. 25:2104–2116.
  • Hu J, Wang B, Fang X, Means WJ, McCormick RJ, Gomelsky M, Zhu MJ. 2013. c-di-GMP signaling regulates E coli O157:H7 adhesion to colonic epithelium. Vet Microbiol. 164:344–351. doi:10.1016/j.vetmic.2013.02.023
  • Jenal U. 2004. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol. 7:185–191. doi:10.1016/j.mib.2004.02.007
  • Kim HK, Harshey RM. 2016. A diguanylate cyclase acts as a cell division inhibitor in a two-step response to reductive and envelope stresses. mBio. 7:e00822–16. doi:10.1128/mBio.00822-16
  • Koo H, Raymond NA, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 15:740–755. doi:10.1038/nrmicro.2017.99
  • Lacanna E, Bigosch C, Kaever V, Boehm A, Becker A. 2016. Evidence for Escherichia coli diguanylate cyclase DgcZ interlinking surface sensing and adhesion via multiple regulatory routes. J Bacteriol. 198:2524–2535. doi:10.1128/JB.00320-16
  • Lacey MM, Partridge JD, Green J. 2010. Escherichia coli K-12 YfgF is an anaerobic cyclic di-GMP phosphodiesterase with roles in cell surface remodelling and the oxidative stress response. Microbiology (Reading). 156:2873–2886. doi:10.1099/mic.0.037887-0
  • Liu J, Zhang D, Lian S, Gu X, Hou Q, Xia P, Zhu G. 2021. Mechanism of nitrite transporter NirC in motility, biofilm formation, and adhesion of avian pathogenic Escherichia coli. Arch Microbiol. 203:4221–4231. doi:10.1007/s00203-021-02412-5
  • Lobysheva II, Stupakova MV, Mikoyan VD, Vasilieva SV, Vanin AF. 1999. Induction of the SOS DNA repair response in Escherichia coli by nitric oxide donating agents: dinitrosyl iron complexes with thiol-containing ligands and S-nitrosothiols. FEBS Lett. 454:177–180. doi:10.1016/s0014-5793(99)00777-2
  • Ma H, Winslow CJ, Logan BE. 2008. Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces. Colloids Surf B Biointerfaces. 62:232–237. doi:10.1016/j.colsurfb.2007.10.007
  • Mah TF. 2012. Biofilm-specific antibiotic resistance. Future Microbiol. 7:1061–1072. doi:10.2217/fmb.12.76
  • McCarthy RR, Mazon-Moya MJ, Moscoso JA, Hao Y, Lam JS, Bordi C, Mostowy S, Filloux A. 2017. Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nat Microbiol. 2:17027. doi:10.1038/nmicrobiol.2017.27
  • Merritt JH, Kadouri DE, O'Toole GA. 2005. Growing and analyzing static biofilms. Curr Protoc Microbiol. Chapter 1:Unit-1B.1. doi:10.1002/9780471729259.mc01b01s00
  • Moradali MF, Rehm BHA. 2020. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 18:195–210. doi:10.1038/s41579-019-0313-3
  • O'Toole GA. 2011. Microtiter dish biofilm formation assay. J Vis Exp. 47:2437.
  • Park B-J, Abu-Lail NI. 2010. Variations in the nanomechanical properties of virulent and avirulent Listeria monocytogenes. Soft Matter. 6:3898–3909. doi:10.1039/b927260g
  • Park B-J, Abu-Lail NI. 2011. Atomic force microscopy investigations of heterogeneities in the adhesion energies measured between pathogenic and non-pathogenic Listeria species and silicon nitride as they correlate to virulence and adherence. Biofouling. 27:543–559. doi:10.1080/08927014.2011.584129
  • Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. 2009. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol. 73:680–694. doi:10.1111/j.1365-2958.2009.06799.x
  • Percival SL, Suleman L, Vuotto C, Donelli G. 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 64:323–334. doi:10.1099/jmm.0.000032
  • Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R. 2008. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 22:2434–2446. doi:10.1101/gad.475808
  • Petrova OE, Sauer K. 2017. High-performance liquid chromatography (HPLC)-based detection and quantitation of cellular c-di-GMP. Methods Mol Biol. 1657:33–43. doi:10.1007/978-1-4939-7240-1_4
  • Povolotsky TL, Hengge R. 2012. Life-style’ control networks in Escherichia coli: signaling by the second messenger c-di-GMP. J Biotechnol. 160:10–16. doi:10.1016/j.jbiotec.2011.12.024
  • Ramezanian S, Ta HX, Muhunthan B, Abu-Lail N. 2018. Abu-Lail NI. Role of ionic strength in the retention and initial attachment of Pseudomonas putida to quartz sand. Biointerphases. 13:041005. doi:10.1116/1.5027735
  • Roy AB, Petrova OE, Sauer K. 2012. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol. 194:2904–2915. doi:10.1128/JB.05346-11
  • Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 77:1–52. doi:10.1128/MMBR.00043-12
  • Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. Nat Rev Microbiol. 18:571–586. doi:10.1038/s41579-020-0385-0
  • Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A. 2016. Cyclic di-GMP regulates multiple cellular functions in the symbiotic Alphaproteobacterium Sinorhizobium meliloti. J Bacteriol. 198:521–535. doi:10.1128/JB.00795-15
  • Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 8:76. doi:10.1186/s13756-019-0533-3
  • Simm R, Morr M, Kader A, Nimtz M, Römling U. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol. 53:1123–1134. doi:10.1111/j.1365-2958.2004.04206.x
  • Soon RL, Nation RL, Hartley PG, Larson I, Li J. 2009. Atomic force microscopy investigation of the morphology and topography of colistin-heteroresistant Acinetobacter baumannii strains as a function of growth phase and in response to colistin treatment. Antimicrob Agents Chemother. 53:4979–4986. doi:10.1128/AAC.00497-09
  • Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, et al. 2008. The chemical biology of nitric oxide: implications in cellular signalling. Free Rad Biol Med. 45:18–31. doi:10.1016/j.freeradbiomed.2008.03.020
  • Wang YK, Krasnopeeva E, Lin SY, Bai F, Pilizota T, Lo CJ. 2019. Comparison of Escherichia coli surface attachment methods for single-cell microscopy. Sci Rep. 9:19418. doi:10.1038/s41598-019-55798-0
  • Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA. 2007. A metabolic sensor governing cell size in bacteria. Cell. 130:335–347. doi:10.1016/j.cell.2007.05.043
  • Werwinski S, Wharton J, Iglesias-Rodriguez M, Stokes K. 2011. Electrochemical sensing of aerobic marine bacterial biofilms and the influence of nitric oxide attachment control. MRS Proc. 1356:805. doi:10.1557/opl.2011.1054
  • Wille J, Coenye T. 2020. Biofilm dispersion: the key to biofilm eradication or opening Pandora’s box? Biofilm. 2:100027. doi:10.1016/j.bioflm.2020.100027
  • Wille J, Teirlinck E, Sass A, Van Nieuwerburgh F, Kaever V, Braeckmans K, Coenye T. 2020. Does the mode of dispersion determine the properties of dispersed Pseudomonas aeruginosa biofilm cells? Int J Antimicrob Agents. 56:106194. doi:10.1016/j.ijantimicag.2020.106194
  • Woo JK, Webb JS, Kirov SM, Kjelleberg S, Rice SA. 2012. Biofilm dispersal cells of a cystic fibrosis Pseudomonas aeruginosa isolate exhibit variability in functional traits likely to contribute to persistent infection. FEMS Immunol Med Microbiol. 66:251–264. doi:10.1111/j.1574-695X.2012.01006.x
  • Wood TK, Barrios AFG, Herzberg M, Lee J. 2006. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol. 72:361–367.
  • Zhu X, Oh HS, Ng YCB, Tang PY, Barraud N, Rice SA. 2018. Nitric oxide-mediated induction of dispersal in Pseudomonas aeruginosa biofilms is inhibited by flavohemoglobin production and is enhanced by imidazole. Antimicrob Agents Chemother. 62:e01832–e01817. doi:10.1128/AAC.01832-17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.