Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 8
149
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The movement and settlement behaviour of cyprids of Balanus reticulatus on the surfaces of the titanium alloys

, ORCID Icon, ORCID Icon, , &
Pages 824-836 | Received 27 Aug 2021, Accepted 17 Oct 2022, Published online: 31 Oct 2022

References

  • Aldred N, Alsaab A, Clare AS. 2018. Quantitative analysis of the complete larval settlement process confirms Crisp’s model of surface selectivity by barnacles. Proc R Soc B. 285:20171957. doi:10.1098/rspb.2017.1957
  • Aldred N, Clare AS. 2008. The adhesive strategies of cyprids and development of barnacle resistant marine coatings. Biofouling. 24:351–363. doi:10.1080/08927010802256117
  • Aldred N, Ekblad T, Andersson O, Liedberg B, Clare AS. 2011. Real-time quantification of microscale bioadhesion events in situ using imaging surface plasmon resonance (iSPR). ACS Appl Mater Interfaces. 3:2085–2091. doi:10.1021/am2003075
  • Aldred N, Li GZ, Gao Y, Clare AS, Jiang SY. 2010a. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 26:673–683. doi:10.1080/08927014.2010.506677
  • Aldred N, Scardino A, Cavaco A, de Nys R, Clare AS. 2010b. Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement. Biofouling. 26:287–299. doi:10.1080/08927010903511626
  • Amsler MO, Amsler CD, Rittschof D, Becerro MA, Mcclintock JB. 2006. The use of computer-assisted motion analysis for quantitative studies of the behaviour of barnacle (Balanus amphitrite) larvae. Mar Freshw Behav Physiol. 39:259–268. doi:10.1080/10236240600980640
  • Anandkumar B, George RP, Rao CJ, Philip J. 2019. In situ application of alternate potentials with chlorination synergistically enhanced biofouling control of titanium condenser materials. Int Biodeter Biodegr. 144:104746. doi:10.1016/j.ibiod.2019.104746
  • Berntsson KM, Jonsson PR, Larsson AI, Holdt S. 2004. Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Mar Ecol Prog Ser. 275:199–210. doi:10.3354/meps275199
  • Berntsson KM, Jonsson PR, Lejhall M, Gatenholm P. 2000. Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Balanus improvises. J Exp Mar Biol Ecol. 251:59–83. doi:10.1016/S0022-0981(00)00210-0
  • Blackwood DJ, Lim CS, Teo SL, Hu X, Pang J. 2017. Macrofouling induced localized corrosion of stainless steel in Singapore seawater. Corros Sci. 129:152–160. doi:10.1016/j.corsci.2017.10.008
  • Burden JF. 2009. Marine antifouling laboratory bioassays: an overview of their diversity. Biofouling. 25:297–311.
  • Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA. 2002. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling. 18:229–236. doi:10.1080/08927010290014908
  • Chaw KC, Birch WR. 2009. Quantifying the exploratory behaviour of Amphibalanus amphitrite cyprids. Biofouling. 25:611–619. doi:10.1080/08927010903033621
  • Chaw KC, Dickinson GH, Ang KY, Deng J, Birch WR. 2011. Surface exploration of Amphibalanus amphitrite cyprids on microtextured surfaces. Biofouling. 27:413–422. doi:10.1080/08927014.2011.577210
  • Clare AS, Aldred N. 2009. Surface colonisation by marine organisms and its impact on antifouling research. In Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Cambridge: Woodshead Publishing; p. 46–79.
  • Clare AS, Freet RK, McClary M. 1994. On the antennular secretion of the cyprid of Balanus amphitrite, and its role as a settlement pheromone. J Mar Biol Ass. 74:243–250. doi:10.1017/S0025315400035803
  • Clare AS, Høeg JT. 2008. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling. 24:55–57. doi:10.1080/08927010701830194
  • Crisp DJ. 1961. Territorial behaviour in barnacle settlement. J Exp Biol. 38:429–446. doi:10.1242/jeb.38.2.429
  • Crisp DJ. 1976. Adaptation to environment: Essays on the physiology of marine animals: Two settlement responses in marine organisms. London: Butterworths; p. 83–124.
  • Crisp DJ, Barnes H. 1954. The orientation and distribution of barnacles at settlement with particular reference to surface contour. J Anim Ecol. 23:142–162. doi:10.2307/1664
  • de Brito LVR, Coutinho R, Cavalcanti EHS, Benchimol M. 2007. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel. Biofouling. 23:193–201. doi:10.1080/08927010701258966
  • de Messano LVR, Reznik LY, Sathler L, Coutinho R. 2014. Evaluation of biocorrosion on stainless steels using laboratory-reared barnacle amphibalanus amphitrite. Anti-Corros Method M. 61:402–408. doi:10.1108/ACMM-07-2013-1278
  • Dineen JF, Hines AH. 1994. Effects of salinity and adult extracts on settlement of the oligohaline barnacle Balanus subalbidus. Marine Bioliogy. 119:423–430. doi:10.1007/BF00347539
  • Dobretsov S, Rittschof D. 2020. Love at first taste: introduction of larval settlement by marine microbes. IJMS. 21:731. doi:10.3390/ijms21030731
  • Eashwar M, Subramanian G, Chandrasekaran P, Balakrishnan K. 1992. Mechanism for barnacle-induced crevice corrosion in stainless steel. Corrosion. 48:608–612. doi:10.5006/1.3315979
  • Eckman JE, Savidge WB, Gross TF. 1990. Relationship between duration of cyprid attachment and drag forces associated with detachment of Balanus amphitrite cyprids. Mar Biol. 107:111–118. doi:10.1007/BF01313248
  • Faimali M, Garaventa F, Piazza V, Greco G, Corrà C, Magillo F, Pittore M, Giacco E, Gallus L, Falugi C, et al. 2006. Swimming speed alteration of larvae of Balanus amphitrite as a behavioural end-point for laboratory toxicological bioassays. Mar Biol. 149:87–96. doi:10.1007/s00227-005-0209-9
  • Guo S, Puniredd SR, Jańczewski D, Lee SSC, Teo SLM, He T, Zhu X, Vancso GJ. 2014. Barnacle larvae exploring surfaces with variable hydrophilicity: influence of morphology and adhesion of "footprint" proteins by AFM. ACS Appl Mater Interfaces. 6:13667–13676. doi:10.1021/am503147m
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 3:453–470. doi:10.1146/annurev-marine-120709-142753
  • Harder TN, Thiyagarajan V, Qian PY. 2001. Effect of cyprid age on the settlement of Balanus amphitrite Darwin in response to natural biofilms. Biofouling. 17:211–219. doi:10.1080/08927010109378480
  • Hellio C, Simon-Colin C, Clare A, Deslandes E. 2004. Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling. 20:139–145. doi:10.1080/08927010412331279605
  • Hills JM, Thomason JC. 1998. The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling. 12:57–69. doi:10.1080/08927019809378346
  • Hills JM, Thomason JC, Davis H, Kohler J, Millett E. 2000. Exploratory behaviour of barnacle larvae in field conditions. Biofouling. 16:171–179. doi:10.1080/08927010009378442
  • Høeg JT, Møller OS. 2006. When similar beginnings lead to different ends: constraints and diversity in cirripede larval development. Invertebr Reprod Dev. 49:125–142. doi:10.1080/07924259.2006.9652204
  • Hou SY, Gu H, Smith C, Ren DC. 2011. Microtopographic patterns affect Escherichia coli biofilm formation on poly(dimethylsiloxane) surfaces. Langmuir. 27:2686–2691. doi:10.1021/la1046194
  • Kamino K. 2013. Mini-review: barnacle adhesives and adhesion. Biofouling. 29:735–749. doi:10.1080/08927014.2013.800863
  • Knight-Jones EW, Crisp DJ. 1953. Gregariousness in barnacles in relation to the fouling of ships and to antifouling research. Nature. 171:1109–1110. doi:10.1038/1711109a0
  • Koryakova MD, Filonenko NY, Kaplin YM. 1995. Barnacle-induced corrosion of high-alloyed steels. Prot Met. 31:219–221.
  • Lagersson NC, Høeg JT. 2002. Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia). Mar Biol. 141:513–526.
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi:10.1021/cr200350v
  • Maleschlijski S, Bauer S, Aldred N, Clare AS, Rosenhahn A. 2015. Classification of the pre-settlement behaviour of barnacle cyprids. J R Soc Interface. 12:20141104. doi:10.1098/rsif.2014.1104
  • Maleschlijski S, Bauer S, Di Fino A, Sendra GH, Clare AS, Rosenhahn A. 2014. Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries. Biofouling. 30:1055–1065. doi:10.1080/08927014.2014.966097
  • Maruzzo D, Conlan S, Aldred N, Clare AS, Høeg JT. 2011. Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae. Biofouling. 27:225–239. doi:10.1080/08927014.2011.555534
  • Murugan VK, Mohanram H, Budanovic M, Latchou A, Webster RD, Miserez A, Seita M. 2020. Accelerated corrosion of marine-grade steel by a redox-active, cysteine-rich barnacle cement protein. NPJ Mater Degrad. 4:20. doi:10.1038/s41529-020-0124-z
  • Neville A, Hodgkiess T. 2000. Localised effects of macrofouling species on electrochemical corrosion of corrosion resistant alloys. Brit Corros J. 35:54–59. doi:10.1179/000705900101501083
  • O’Connor NJ, Richardson DL. 1994. Comparative attachment of barnacle cyprids (Balanus amphitrite Darwin, 1854; B. improvisus Darwin, 1854; & B. ehurneus Gould, 1841) to polystyrene and glass substrata. J Exp Mar Biol Ecol. 183:213–225. doi:10.1016/0022-0981(94)90088-4
  • Petersen DS, Gorb SN, Heepe L. 2020. The influence of material and roughness on the settlement and the adhesive strength of the barnacle Balanus improvisus in the Baltic Sea. Front Mar Sci. 7:664. doi:10.3389/fmars.2020.00664
  • Prendergast GS. 2007. Settlement and succession of benthic marine organisms: interactions between multiple physical and biological factors [dissertation]. UK: University of Newcastle.
  • Prendergast GS, Zurn CM, Bers AV, Head RM, Hansson LJ, Thomason JC. 2008. Field-based video observations of wild barnacle cyprid behaviour in response to textural and chemical settlement cues. Biofouling. 24:449–459. doi:10.1080/08927010802340135
  • Raman S, Karunamoorthy L, Doble M, Kumar R, Venkatesan R. 2013. Barnacle adhesion on natural and synthetic substrates: adhesive structure and composition. Int J Adhes Adhes. 41:140–143. doi:10.1016/j.ijadhadh.2012.11.003
  • Santos R, Gorb S, Jamar V, Flammang P. 2005. Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol. 208:2555–2567. doi:10.1242/jeb.01683
  • Satuito CG, Shimizu K, Natoyama K, Yamazaki M, Fusetani N. 1996. Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar Biol. 127:125–130. doi:10.1007/BF00993652
  • Scardino AJ, Guenther J, de Nys R. 2008. Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling. 24:45–53. doi:10.1080/08927010701784391
  • Scardino AJ, Harvey E, de Nys R. 2006. Testing attachment point theory: diatom attachment on microtextured polyimide biomimics. Biofouling. 22:55–60. doi:10.1080/08927010500506094
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB. 2007a. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling. 23:307–317. doi:10.1080/08927010701393276
  • Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB. 2007b. Engineered antifouling microtopographies-effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling. 23:55–62.
  • Southward AJ, Hiscock K, Kerckhof F, Moyse J, Elfimov AS. 2004. Habitat and distribution of the warm-water barnacle Solidobalanus fallax (Crustacea: Cirripedia). J Mar Biol Ass. 84:1169–1177. doi:10.1017/S0025315404010616h
  • Thomason JC, Hills JM, Thomason PO. 2002. Field-based behavioural bioassays for testing the efficacy of antifouling coatings. Biofouling. 18:285–292. doi:10.1080/0892701021000034391
  • Uzun D, Ozyurt R, Demirel YK, Turan O. 2020. Does the barnacle settlement pattern affect ship resistance and powering? Appl Ocean Res. 95:102020. doi:10.1016/j.apor.2019.102020
  • Vanithakumari SC, George RP, Mudali UK. 2017. Environmental stability and long-term durability of superhydrophobic coatings on titanium. J Mater Eng Perform. 26:2640–2648. doi:10.1007/s11665-017-2708-5
  • Vanithakumari SC, Jena G, Sofia S, Thinaharan C, George RP, Philip J. 2020. Fabrication of superhydrophobic titanium surfaces with superior antibacterial properties using graphene oxide and silanized silica nanoparticles. Surf Coat Tech. 400:126074. doi:10.1016/j.surfcoat.2020.126074
  • Walley LJ. 1969. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Phil. Trans. R Soc Lond B Biol Sci. 256:237–280.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.