Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 8
242
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Biofouling of reverse osmosis membranes: assessment by surface-enhanced Raman spectroscopy and microscopic imaging

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 852-864 | Received 23 Mar 2022, Accepted 19 Oct 2022, Published online: 31 Oct 2022

References

  • Akanny E, Bonhommé A, Bessueille F, Bourgeois S, Bordes C. 2021. Surface enhanced Raman spectroscopy for bacteria analysis: a review. Appl Spectrosc Rev. 56:380–422. doi:10.1080/05704928.2020.1796698
  • Al-Juboori RA, Yusaf T. 2012. Biofouling in RO system: mechanisms, monitoring and controlling. Desalination. 302:1–23.‏ doi:10.1016/j.desal.2012.06.016
  • Anwar N, Yang L, Ma W, Usman HS, Rahaman MS. 2020. Biofouling in RO desalination membranes. In: Saji VS, Meroufel AA, Sorour AA, editors. Corrosion and fouling control in desalination industry. Cham: Springer; p. 269–283.
  • Benladghem Z, Seddiki SML, Mahdad YM. 2020. Identification of bacterial biofilms on desalination reverse osmosis membranes from the Mediterranean sea. Biofouling. 36:1065–1073. doi:10.1080/08927014.2020.1851366
  • Bereschenko LA, Stams AJM, Euverink GJW, Van Loosdrecht MCM. 2010. Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp. Appl Environ Microbiol. 76:2623–2632. ‏ doi:10.1128/AEM.01998-09
  • Bogachev MI, Volkov VY, Markelov OA, Trizna EY, Baydamshina DR, Melnikov V, Murtazina RR, Zelenikhin PV, Sharafutdinov IS, Kayumov AR. 2018. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images. PLoS One. 13:e0193267. ‏ doi:10.1371/journal.pone.0193267
  • Boucherit-Atmani Z, Seddiki SML, Boucherit K, Sari-Belkharoubi L, Kunkel D. 2011. Candida albicans biofilms formed into catheters and probes and their resistance to amphotericin B. J Mycol Med. 21:182–187. ‏ doi:10.1016/j.mycmed.2011.07.006
  • Chiellini C, Iannelli R, Modeo L, Bianchi V, Petroni G. 2012. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations. Biofouling. 28:969–984. doi:10.1080/08927014.2012.724679
  • Ciloglu FU, Caliskan A, Saridag AM, Kilic IH, Tokmakci M, Kahraman M, Aydin O. 2021. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. Sci Rep. 11:12. doi:10.1038/s41598-021-97882-4
  • Cuevas JP, Moraga R, Sánchez-Alonzo K, Valenzuela C, Aguayo P, Smith CT, Garcia A, Fernandez I, Campos VL. 2020. Characterization of the bacterial biofilm communities present in reverse-osmosis water systems for haemodialysis. Microorganisms. 8:1418. ‏ doi:10.3390/microorganisms8091418[Mismatch]
  • de Brouwer JD, Wolfstein K, Ruddy GK, Jones TER, Stal LJ. 2005. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microb Ecol. 49:501–512. ‏ doi:10.1007/s00248-004-0020-z
  • Flemming HC, Baveye P, Neu TR, Stoodley P, Szewzyk U, Wingender J, Wuertz S. 2021. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilm Microb. 7:1–5. ‏
  • Flemming HC, Schaule G, Griebe T, Schmitt J, Tamachkiarowa A. 1997. Biofouling —the Achilles heel of membrane processes. Desalination. 113:215–225. doi:10.1016/S0011-9164(97)00132-X
  • Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA. 2000. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem. 72:119–127. ‏ doi:10.1021/ac990661i
  • Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ. 1998. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology. 144:1157–1170. ‏ doi:10.1099/00221287-144-5-1157
  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M. 2005. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere. 59:629–638. doi:10.1016/j.chemosphere.2004.10.028
  • Guo W, Ngo HH, Li J. 2012. A mini-review on membrane fouling. Bioresour Technol. 122:27–34. ‏ doi:10.1016/j.biortech.2012.04.089
  • Hassan N, Anand S, Avad Hanula M. 2010. Microscopic observation of multispecies biofilm of various structures on whey concentration membranes. J Dairy Sci. 93:2321–2329. doi:10.3168/jds.2009-2800
  • Hattori T, Kubo A, Oguri K, Nakano H, Miyazaki HT. 2012. Femtosecond laser-excited two-photon fluorescence microscopy of surface plasmon polariton. Jpn J Appl Phys. 51:04DG03. ‏ doi:10.7567/JJAP.51.04DG03
  • He J, Qiao Y, Zhang H, Zhao J, Li W, Xie T, Zhong D, Wei Q, Hua S, Yu Y, et al. 2020. Gold–silver nano shells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomater. 234:119763. doi:10.1016/j.biomaterials.2020.119763
  • Ho CS, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, Banaei N, Saleh AAE, Ermon S, Dionne J. 2019. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun. 10:8. ‏ doi:10.1038/s41467-019-12898-9[Mismatch]
  • Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS. 2004. Raman microscopic analysis of single microbial cells. Anal Chem. 76:4452–4458. doi:10.1021/ac049753k
  • Jarvis RM, Goodacre R. 2008. Characterization and identification of bacteria using SERS. Chem Soc Rev. 37:931–936. ‏ doi:10.1039/b705973f
  • Jett BD, Hatter KL, Huycke MM, Gilmore MS. 1997. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 23:648–650. ‏ doi:10.2144/97234bm22
  • Keleştemur S, Avci E, Çulha M. 2018. Raman and surface-enhanced Raman scattering for biofilm characterization. Chemosens. 6:5. ‏ doi:10.3390/chemosensors6010005
  • Khan MT, Manes CLDO, Aubry C, Croué JP. 2013. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea. Water Res. 47:558–568. ‏ doi:10.1016/j.watres.2012.10.017
  • Khan MMT, Stewart PS, Moll DJ, Mickols WE, Nelson SE, Camper AK. 2011. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Biofouling. 27:173–183. ‏ doi:10.1080/08927014.2010.551766
  • Kim H, Lee S, Seo HW, Kang B, Moon J, Lee KG, Yong D, Kang H, Jung J, Lim EK, et al. 2020. Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced Raman scattering assay for multidrug-resistant bacteria. Am Chem Soc Nano. 14:17241–17253. doi:10.1021/acsnano.0c07264[Mismatch]
  • Kotanen CN, Martinez L, Alvarez R, Simecek JW. 2016. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sens Biosens Res. 8:20–26. ‏ doi:10.1016/j.sbsr.2016.03.002
  • Kwan SE, Bar-Zeev E, Elimelech M. 2015. Biofouling in forward osmosis and reverse osmosis: Measurements and mechanisms. J Membr Sci. 493:703–708. ‏ doi:10.1016/j.memsci.2015.07.027
  • Lee KP, Arnot TC, Mattia D. 2011. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci. 370:1–22. ‏ doi:10.1016/j.memsci.2010.12.036
  • Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. 2014. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. Isme J. 8:894–907. ‏ doi:10.1038/ismej.2013.194
  • Lei Y, Ai C, Zhang G. 2017. Effect of EPS content on activated sludge reduction in process of predation by T. tubifex. In: IOP Conf Ser: Earth Environ Sci. 100:012063.
  • Li L, Li CY, Ni C, Rong L, Hsiao B. 2007. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 48:3452–3460. doi:10.1016/j.polymer.2007.04.030
  • López-Ramírez JA, Oviedo MC, Alonso JQ. 2006. Comparative studies of reverse osmosis membranes for wastewater reclamation. Desalination. 191:137–147. ‏ doi:10.1016/j.desal.2005.08.013
  • Maddams WF, Royaud IAM. 1991. The application of Fourier transform Raman spectroscopy to the identification and characterisation of polyamides—II. Double-number nylons. Spectrochimica Acta Part A: Mol Spectrosc. 47:1327–1333. doi:10.1016/0584-8539(91)80223-6
  • Maquelin K, Kirschner C, Choo-Smith L-P, Ngo-Thi NA, van Vreeswijk T, Stämmler M, Endtz HP, Bruining HA, Naumann D, Puppels GJ. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 41:324–329. ‏ doi:10.1128/JCM.41.1.324-329.2003
  • Matin A, Khan Z, Zaidi SMJ, Boyce MC. 2011. Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination. 281:1–16. ‏‏ doi:10.1016/j.desal.2011.06.063
  • Montañez-Izquierdo VY, Salas-Vázquez DI, Rodríguez-Jerez JJ. 2012. Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control. 23:470–477. ‏ doi:10.1016/j.foodcont.2011.08.016
  • Naumann D. 2001. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev. 36:239–298. ‏ doi:10.1081/ASR-100106157
  • Nguyen V, Karunakaran E, Collins G, Biggs CA. 2016. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material. Colloids Surf B Biointerfaces. 143:518–525. ‏ doi:10.1016/j.colsurfb.2016.03.042
  • Nguyen T, Roddick F, Fan L. 2012. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes. 2:804–840. doi:10.3390/membranes2040804
  • Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev. 89:105–120. ‏ doi:10.1016/j.addr.2015.04.006
  • Park JW, Lee YJ, Meyer AS, Douterelo I, Maeng SK. 2018. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies. Water Res. 144:36–45. doi:10.1016/j.watres.2018.07.027
  • Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A. 2012. Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res. 46:5499–5508. doi:10.1016/j.watres.2012.07.029
  • Petrich W. 2001. Mid-infrared and Raman spectroscopy for medical diagnostics. Appl Spectrosc Rev. 36:181–237. ‏ doi:10.1081/ASR-100106156
  • Petry R, Schmitt M, Popp J. 2003. Raman spectroscopy—a prospective tool in the life sciences. Chemphyschem. 4:14–30. ‏ doi:10.1002/cphc.200390004
  • Podar M, May AL, Bai W, Peyton K, Klingeman DM, Swift CM, Linson DA, Mathieu J, Siljeström D, Beneyto I, et al. 2021. Microbial diversity analysis of two full-scale seawater desalination treatment trains provides insights into detrimental biofilm formation. J Memb Sci Lett. 1:100001. ‏ doi:10.1016/j.memlet.2021.100001
  • Qureshi BA, Zubair SM, Sheikh AK, Bhujle A, Dubowsky S. 2013. Design and performance evaluation of reverse osmosis desalination systems: an emphasis on fouling modeling. Appl Therm Eng. 60:208–217. doi:10.1016/j.applthermaleng.2013.06.058
  • Ramesh K, Melzner F, Griffith AW, Gobler CJ, Rouger C, Tasdemir D, Nehrke G. 2018. In vivo characterization of bivalve larval shells: a confocal Raman microscopy study. J R Soc Interface. 15:20170723. doi:10.1098/rsif.2017.0723
  • Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Holá V, Ježek J, Zemánek P, Sokolová J, Petráš P. 2017. Rapid identification of staphylococci by Raman spectroscopy. Sci Rep. 7:1–8. ‏ doi:10.1038/s41598-017-13940-w[Mismatch]
  • Rehman ZU, Vrouwenvelder JS, Saikaly P. 2021. Physicochemical properties of extracellular polymeric substances produced by three bacterial isolates from biofouled reverse osmosis membranes. Front Microbiol. 12:1763. ‏
  • Samek O, Al‐Marashi JFM, Telle HH. 2010. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys Lett. 7:378–383. doi:10.1002/lapl.200910154
  • Sánchez-Cortés S, Corrado G, Trubetskaya OE, Trubetskoj OA, Hermosin B, Saiz-Jimenez C. 2006. Surface-enhanced raman spectroscopy of chernozem humic acid and their fractions obtained by coupled size exclusion chromatography—polyacrylamide gel electrophoresis (SEC-PAGE). Appl Spectrosc. 60:48–53. doi:10.1366/000370206775382695
  • [SCA] Standing Committee of Analysts (UK). 2020. The microbiology of drinking water 2012: Part 7: The enumeration of heterotrophic bacteria by pour and spread plate techniques. Methods for the examination of waters and associated materials. http://www.standingcommitteeofanalysts.co.uk/blue%20book%20library/268.pdf.
  • Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B. 2000. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem. 72:5529–5534. doi:10.1021/ac000718x
  • Seddiki SML. 2021. Introduction aux biofilms microbiens [Introduction to microbial biofilms]. Connaissances et Savoir Editions, Paris (France). French. https://www.connaissances-svoirs.com/introduction-aux-biofilms-microbiens-sidi-mohammed-lahbib-seddiki.html/. .
  • Strola SA, Baritaux J-C, Schultz E, Simon AC, Allier C, Espagnon I, Jary D, Dinten J-M. 2014. Single bacteria identification by Raman spectroscopy. J Biomed Opt. 19:111610.doi:10.1117/1.JBO.19.11.111610
  • Szymańska-Chargot M, Chylińska M, Pieczywek PM, Rösch P, Schmitt M, Popp J, Zdunek A. 2016. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta. 243:935–945. doi:10.1007/s00425-015-2456-4
  • Tien NI, Chen HC, Gau SL, Lin TH, Lin HS, You BJ, Tsai PC, Chen IR, Tsai MF, Wang IK, et al. 2016. Diagnosis of bacterial pathogens in the dialysate of peritoneal dialysis patients with peritonitis using surface-enhanced Raman spectroscopy. Clin Chim Acta. 461:69–75. doi:10.1016/j.cca.2016.07.026
  • Tong N, Zhu C, Zhang C, Zhang Y. 2016. Study on Raman spectra of aliphatic polyamide fibers. Optik. 127:21–24. ‏ doi:10.1016/j.ijleo.2015.09.180
  • Van den Broek WBP, Boorsma MJ, Huiting H, Dusamos MG, van Agtmaal S. 2010. Prevention of biofouling in industrial RO Systems: experiences with peracetic acid. Water Pract Technol. 5(2):wpt2010042. doi:10.2166/wpt.2010.042
  • Vera-Villalobos H, Pérez V, Contreras F, Alcayaga V, Avalos V, Riquelme C, Silva-Aciares F. 2020. Characterization and removal of biofouling from reverse osmosis membranes (ROMs) from a desalination plant in Northern Chile, using Alteromonas sp. Ni1-LEM supernatant. Biofouling. 36:505–515. ‏ doi:10.1080/08927014.2020.1776268
  • Vrouwenvelder JS, Van der Kooij D. 2001. Diagnosis, prediction and prevention of biofouling of NF and RO membranes. Desalination. 139:65–71. doi:10.1016/S0011-9164(01)00295-8
  • Vrouwenvelder JS, Von Der Schulenburg DG, Kruithof JC, Johns ML, Van Loosdrecht MCM. 2009. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Water Res. 43:583–594. ‏ doi:10.1016/j.watres.2008.11.019
  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H. 2009. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS–matrix. Water Res. 43:63–76. ‏ doi:10.1016/j.watres.2008.10.034
  • Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G. 2021. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: a review. Anal Chim Acta. 1157:338279. doi:10.1016/j.aca.2021.338279
  • Wichmann C, Rösch P, Popp J. 2021. Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Anal Bioanal Chem. 413:5193–5200. doi:10.1007/s00216-021-03488-0
  • Winters H, Eu HG, Li S, Alpatova A, Alshahri AH, Nasar N, Ghaffour N. 2022. Biofouling of seawater reverse osmosis membranes caused by dispersal of planktonic particulate bacterial aggregates (protobiofilms) from rotary energy recovery devices. Desalination. 529:115647. ‏ doi:10.1016/j.desal.2022.115647
  • Xu GR, Wang JN, Li CJ. 2013. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination. 328:83–100. ‏ doi:10.1016/j.desal.2013.08.022
  • Zhang P, Shen Y, Guo JS, Li C, Wang H, Chen YP, Yan P, Yang JX, Fang F. 2015. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics. Sci Rep. 5:12041–120-11. ‏ doi:10.1038/srep12041
  • Zhang R, Wu H, Su Y, Qiu L, Ni H, Xu KM, Zhao W. 2021. In-situ high-precision surface topographic and Raman mapping by divided-aperture differential confocal Raman microscopy. Appl Surf Sci. 546:149061. ‏ doi:10.1016/j.apsusc.2021.149061
  • Zimba CG, Rabolt JF, English AD. 1989. Raman spectroscopic characterization and molecular force field development of a synthetic polyamide: Nylon 66. Macromol. 22:2863–2867. doi:10.1021/ma00196a061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.