Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 10
298
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hybrid gum tragacanth/sodium alginate hydrogel reinforced with silver nanotriangles for bacterial biofilm inhibition

, , &
Pages 965-983 | Received 08 Jul 2022, Accepted 04 Dec 2022, Published online: 15 Dec 2022

References

  • Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A. 2020. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 14:1–22. doi:10.1186/s13036-020-0227-7
  • Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP. 2018. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep. 8:201. doi:10.1038/s41598-017-18590-6
  • Agostino AD, Taglietti A, Desando R, Bini M, Patrini M, Dacarro G, Cucca L, Pallavicini P, Grisoli P. 2017. Bulk surfaces coated with triangular silver nanoplates: antibacterial action based on silver release and photo-thermal effect. Nanomaterials. 7:7. doi:10.3390/nano7010007
  • Aherne D, Ledwith DM, Gara M, Kelly JM. 2008. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv Funct Mater. 18:2005–2016. doi:10.1002/adfm.200800233
  • Ahmed EM. 2015. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 6:105–121. doi:10.1016/j.jare.2013.07.006
  • Alavi M, Karimi N, Valadbeigi T. 2019. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 5:4228–4243. doi:10.1021/acsbiomaterials.9b00274
  • Al-Zahrani FAM, Salem SS, Al-Ghamdi HA, Nhari LM, Lin L, El-Shishtawy RM. 2022. Green synthesis and antibacterial activity of Ag/Fe2O3 nanocomposite using Buddleja lindleyana extract. Bioeng. 9:452–465. doi:10.3390/bioengineering9090452
  • Ansari MA, Khan HM, Khan AA, Cameotra SS, Alzohairy MA. 2015. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 33:101–109. doi:10.4103/0255-0857.148402
  • Apoorva A, Rameshbabu AP, Dasgupta S, Dhara S, Padmavati M. 2020. Novel pH-sensitive alginate hydrogel delivery system reinforced with gum tragacanth for intestinal targeting of nutraceuticals. Int J Biol Macromol. 147:675–687. doi:10.1016/j.ijbiomac.2020.01.027
  • Bakshi MS, Kaur G, Possmayer F, Petersen NO. 2008. Shape-controlled synthesis of poly(styrene sulfonate) and poly(vinyl pyrolidone) capped lead sulfide nanocubes, bars, and threads. J Phys Chem C. 112:4948–4953. doi:10.1021/jp711925b
  • Bhattacharjee B, Jolly L, Mukherjee R, Haldar J. 2022. An easy-to-use antimicrobial hydrogel effectively kills bacteria, fungi, and influenza virus. Biomater Sci. 10:2014–2028. doi:10.1039/D2BM00134A
  • Bi Y, Xia G, Shi C, Wan J, Liu L, Chen Y, Wu Y, Zhang W, Zhou M, He H, et al. 2021. Therapeutic strategies against bacterial biofilms. Fundam Res. 1:193–212. doi:10.1016/j.fmre.2021.02.003
  • Boot W, Vogely HC, Jiao C, Nikkels PG, Pouran B, van Rijen MH, Ekkelenkamp MB, Hänsch GM, Dhert WJ, Gawlitta D. 2020. Prophylaxis of implant-related infections by local release of vancomycin from a hydrogel in rabbits. Eur Cell Mater. 39:108–120. doi:10.22203/eCM.v039a07
  • Cheng Q, Ding S, Zheng Y, Wu M, Peng YY, Diaz-Dussan D, Shi Z, Liu Y, Zeng H, Cui Z, et al. 2021. Dual cross-linked hydrogels with injectable, self-healing, and antibacterial properties based on the chemical and physical cross-linking. Biomacromolecules. 22:1685–1694. doi:10.1021/acs.biomac.1c00111
  • Cikrikci S, Mert B, Oztop MH. 2018. Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J Agric Food Chem. 66:11784–11796. doi:10.1021/acs.jafc.8b02525
  • Dai T, Wang C, Wang Y, Xu W, Hu J, Cheng Y. 2018. A nanocomposite hydrogel with potent and broad-spectrum antibacterial activity. ACS Appl Mater Interfaces. 10:15163–15173. doi:10.1021/acsami.8b02527
  • De Mori A, Hafidh M, Mele N, Yusuf R, Cerri G, Gavini E, Tozzi G, Barbu E, Conconi M, Draheim RR, et al. 2019. Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications. Pharmaceutics. 11:116. doi:10.3390/pharmaceutics11030116
  • Deen GR, Chua V. 2015. Synthesis and properties of new “stimuli” responsive nanocomposite hydrogels containing silver nanoparticles. Gels. 1:117–134. doi:10.3390/gels1010117
  • Djafari J, Fernández-Lodeiro C, Fernández-Lodeiro A, Silva V, Poeta P, Igrejas G, Lodeiro C, Capelo JL, Fernández-Lodeiro J. 2019. Exploring the control in antibacterial activity of silver triangular nanoplates by surface coating modulation. Front Chem. 6:1–11. doi:10.3389/fchem.2018.00677
  • Du P, Xu Y, Shi Y, Xu Q, Li S, Gao M, Du P, Xu Y, Shi Y, Li S. 2022. Preparation and shape change of silver nanoparticles (AgNPs) loaded on the dialdehyde cellulose by in-situ synthesis method. Cellulose (Lond). 29:6831–6843. doi:10.1007/s10570-022-04692-6
  • El BAM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 44:1260–1266. doi:10.1021/es902240k
  • Fasiku VO, Omolo CA, Devnarain N, Ibrahim UH, Rambharose S, Faya M, Mocktar C, Singh SD, Govender T. 2021. Chitosan-based hydrogel for the dual delivery of antimicrobial agents against bacterial methicillin-resistant staphylococcus aureus biofilm-infected wounds. ACS Omega. 6:21994–22010. doi:10.1021/acsomega.1c02547
  • Fernando I, Zhou Y. 2019. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere. 216:297–305. doi:10.1016/j.chemosphere.2018.10.122
  • Ferrag C, Li S, Jeon K, Andoy NM, Sullan RMA, Mikhaylichenko S, Kerman K. 2021. Polyacrylamide hydrogels doped with different shapes of silver nanoparticles: antibacterial and mechanical properties. Colloids Surf B Biointerfaces. 197:111397. doi:10.1016/J.COLSURFB.2020.111397
  • Gao C, Goebl J, Yin Y. 2013. Seeded growth route to noble metal nanostructures. J Mater Chem C. 1:3898–3909. doi:10.1039/c3tc30365a
  • Garg D, Matai I, Garg A, Sachdev A. 2020. Tragacanth hydrogel integrated CeO 2@rGO nanocomposite as reusable photocatalysts for organic dye degradation. ChemSelect. 5:10663–10672. doi:10.1002/slct.202002041
  • Girón-Hernández J, Gentile P, Benlloch-Tinoco M. 2021. Impact of heterogeneously crosslinked calcium alginate networks on the encapsulation of β-carotene-loaded beads. Carbohydr Polym. 271:118429. doi:10.1016/j.carbpol.2021.118429
  • González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P. 2015. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl. 50:332–340. doi:10.1016/j.msec.2015.02.002
  • Goyal D, Kaur G, Tewari R, Kumar R. 2017. Correlation of edge truncation with antibacterial activity of plate-like anisotropic silver nanoparticles. Environ Sci Pollut Res Int. 24:20429–20437. doi:10.1007/s11356-017-9630-0
  • Haidari H, Bright R, Garg S, Vasilev K, Cowin AJ, Kopecki Z. 2021. Eradication of mature bacterial biofilms with concurrent improvement in chronic wound healing using silver nanoparticle hydrogel treatment. Biomedicines. 9:1182. doi:10.3390/biomedicines9091182
  • Hetta HF, Al-Kadmy IMS, Khazaal SS, Abbas S, Suhail A, El-Mokhtar MA, Ellah NHA, Ahmed EA, Abd-Ellatief RB, El-Masry EA, et al. 2021. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci Rep. 11:10751. doi:10.1038/s41598-021-90208-4
  • Hu G, Jin W, Chen Q, Cai Y, Zhu Q, Zhang W. 2016. Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism. Appl Phys A. 122:1–7. doi:10.1007/S00339-016-0395-Y
  • Jing H, Huang X, Du X, Mo L, Ma C, Wang H. 2022. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr Polym. 278:118993. doi:10.1016/J.CARBPOL.2021.118993
  • Joshi AS, Singh P, Mijakovic I. 2020. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. IJMS. 21:7658. doi:10.3390/ijms21207658
  • Karnik S, Jammalamadaka UM, Tappa KK, Giorno R, Mills DK. 2016. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications. Heliyon. 2:e00072. doi:10.1016/j.heliyon.2016
  • Khan AU, Zhou Z, Krause J, Liu G. 2017. Poly(vinylpyrrolidone)-free multistep synthesis of silver nanoplates with plasmon resonance in the near infrared range. Small. 13:1701715. doi:10.1002/smll.201701715
  • Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 4:e01067. doi:10.1016/j.heliyon.2018.e01067
  • Kulanthaivel S, Rathnam SV, Agarwal T, Pradhan S, Pal K, Giri S, Maiti TK, Banerjee I. 2017. Gum tragacanth-alginate beads as proangiogenic-osteogenic cell encapsulation systems for bone tissue engineering. J Mater Chem B. 5:4177–4189. doi:10.1039/c7tb00390k
  • Kumar V, Sachdev A, Matai I. 2020. Self-assembled reduced graphene oxide–cerium oxide nanocomposite@cytochrome c hydrogel as a solid electrochemical reactive oxygen species detection platfor. New J Chem. 44:11248–11255. doi:10.1039/D0NJ02038A
  • Lagha R, Abdallah F, Ben Mezni A, Alzahrani OM. 2021. Effect of plasmonic gold nanoprisms on biofilm formation and heat shock proteins expression in human pathogenic bacteria. Pharm. 14:1335. doi:10.3390/ph14121335
  • Liao CH, Chen CS, Chen YC, Jiang N, Farn CJ, Shen YS, Hsu ML, Chang CH. 2020. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: bio-compatibility, drug release, antimicrobial activity, and biofilm model. J Microbiol Immunol Infect. 53:525–531. doi:10.1016/j.jmii.2019.08.008
  • Malekzadeh M, Yeung KL, Halali M, Chang Q. 2019. Preparation and antibacterial behaviour of nanostructured Ag@SiO2-penicillin with silver nanoplates. New J Chem. 43:16612–16620. doi:10.1039/C9NJ03727F
  • Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruiz F, James G. 2013. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 29:651–660. doi:10.1080/08927014.2013.794225
  • Matai I, Garg M, Rana K, Singh S. 2019. Polydopamine functionalized hydrogel beads as magnetically separable antibacterial materials. RSC Adv. 9:13444–13457. doi:10.1039/c9ra00623k
  • Matai I, Kaur G, Soni S, Sachdev A, Mishra, S, Vikas. 2020. Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery. J Photochem Photobiol B. 210:111960. doi:10.1016/j.jphotobiol.2020.111960
  • Matai I, Pandey SK, Garg D, Rani K, Sachdev A. 2020. Phytogreen synthesis of multifunctional nano selenium with antibacterial and antioxidant implications. Nano Ex. 1:010031. doi:10.1088/2632-959X/ab8bea
  • Moghaddam RH, Dadfarnia S, Shabani AMH, Tavakol M. 2019. Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium (VI) removal from aqueous samples: equilibrium, kinetics, and thermodynamic studies. Carbohydr Polym. 206:352–361. doi:10.1016/j.carbpol.2018.10.030
  • Mohsen E, El-Borady OM, Mohamed MB, Fahim IS. 2020. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J Radiat Res Appl Sci. 13:416–425. doi:10.1080/16878507.2020.1748941
  • Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. 2020. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 11:928. doi:10.3389/FMICB.2020.00928/BIBTEX
  • Nagaraja K, Rao KM, Reddy GV, Rao KSVK. 2021. Tragacanth gum-based multifunctional hydrogels and green synthesis of their silver nanocomposites for drug delivery and inactivation of multidrug resistant bacteria. Int J Biol Macromol. 174:502–511. doi:10.1016/j.ijbiomac.2021.01.203
  • Nie L, Deng Y, Li P, Hou R, Shavandi A, Yang S. 2020. Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega. 5:10948–10957. doi:10.1021/acsomega.0c00727
  • Osi AR, Zhang H, Chen J, Zhou Y, Wang R, Fu J, Müller-Buschbaum P, Zhong Q. 2021. Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan-gelatin hydrogel composites for tissue engineering. ACS Appl Mater Interfaces. 13:22902–22913. doi:10.1021/acsami.1c01321
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73:1712–1720. doi:10.1128/AEM.02218-06
  • Parit SB, Karade VC, Patil RB, Pawar NV, Dhavale RP, Tawre M, Pardesi K, Jadhav UU, Dawkar VV, Tanpure RS, et al. 2020. Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties. Mater Today Chem. 17:100285. doi:10.1016/j.mtchem.2020.100285
  • Pawar V, Topkar H, Srivastava R. 2018. Chitosan nanoparticles and povidone iodine containing alginate gel for prevention and treatment of orthopedic implant associated infections. Int J Biol Macromol. 115:1131–1141. doi:10.1016/j.ijbiomac.2018.04.166
  • Porter GC, Schwass DR, Tompkins GR, Bobbala SKR, Medlicott NJ, Meledandri CJ. 2021. AgNP/Alginate Nanocomposite hydrogel for antimicrobial and antibiofilm applications. Carbohydr Polym. 251:117017. doi:10.1016/j.carbpol.2020.117017
  • Qais FA, Ahmad I, Altaf M, Manoharadas S, Al-Rayes BF, Ali Abuhasil MS, Almaroai YA. 2021. Biofabricated silver nanoparticles exhibit broad-spectrum antibiofilm and antiquorum sensing activity against Gram-negative bacteria. RSC Adv. 11:13700–13710. doi:10.1039/D1RA00488C
  • Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A. 2010. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat Phys Chem. 79:1240–1246. doi:10.1016/j.radphyschem.2010.07.004
  • Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, Ardalan S. 2012. Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol. 23:22–26. doi:10.1016/j.apt.2010.11.011
  • Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. 2019. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling. 35:34–49. doi:10.1080/08927014.2018.1563686
  • Sharma BK, Mehta BR, Shah EV, Chaudhari VP, Roy DR, Mondal Roy S. 2022. Green synthesis of triangular ZnO nanoparticles using Azadirachta indica leaf extract and its shape dependency for significant antimicrobial activity: joint experimental and theoretical investigation. J Clust Sci. 33:2517–2530. doi:10.1007/s10876-021-02145-x
  • Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 8:10. doi:10.1186/s13756-019-0533-3
  • Sharma PK, Halder M, Srivastava U, Singh Y. 2019. Antibacterial PEG-chitosan hydrogels for controlled antibiotic/protein delivery. ACS Appl Bio Mater. 2:5313–5322. doi:10.1021/acsabm.9b00570
  • Siddique MH, Aslam B, Imran M, Ashraf A, Nadeem H, Hayat S, Khurshid M, Afzal M, Malik IR, Shahzad M, et al. 2020. Effect of silver nanoparticles on biofilm formation and EPS production of multidrug-resistant Klebsiella pneumoniae. Biomed Res Int. 2020:6398165. doi:10.1155/2020/6398165
  • Singh B, Singh, J, Rajneesh. 2021. Application of tragacanth gum and alginate in hydrogel wound dressing’s formation using gamma radiation. Carbohydr Polym Technol Appl. 2:100058. doi:10.1016/j.carpta.2021.100058
  • Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. 2015. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep. 5:13719. doi:10.1038/srep13719
  • Singh P, Pandit S, Jers C, Joshi AS, Garnaes J, Mijakovic I. 2021. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci Rep. 11:13. doi:10.1038/s41598-021-92006-4
  • Song Y, Jiang H, Wang B, Kong Y, Chen J. 2018. Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent. ACS Appl Mater Interfaces. 10:1792–1801. doi:10.1021/acsami.7b18136
  • Suleman IAS, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB. 2021. Gelatin hydrogels loaded with lactoferrin-functionalized bio-nanosilver as a potential antibacterial and anti-biofilm dressing for infected wounds: synthesis, characterization, and deciphering of cytotoxicity. Mol Pharm. 18:1956–1969. doi:10.1021/acs.molpharmaceut.0c01033
  • Takeda E, Xu W, Terakawa M, Niidome T. 2022. Tailored structure and antibacterial properties of silica-coated silver nanoplates by pulsed laser irradiation. ACS Omega. 7:7251–7256. doi:10.1021/acsomega.1c07058
  • Tarawneh O, Abu Mahfouz H, Hamadneh L, Deeb AA, Al-Sheikh I, Alwahsh W, Fadhil Abed A. 2022. Assessment of persistent antimicrobial and anti-biofilm activity of p-HEMA hydrogel loaded with rifampicin and cefixime. Sci Rep. 12:1–11. doi:10.1038/s41598-022-07953-3
  • Targhi AA, Moammeri A, Jamshidifar E, Abbaspour K, Sadeghi S, Lamakani L, Akbarzadeh I. 2021. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: enhanced antibacterial and anti-biofilm activities. Bioorg Chem. 115:105116. doi:10.1016/j.bioorg.2021.105116
  • Tripathi N, Goshisht MK. 2022. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater. 5:1391–1463. doi:10.1021/acsabm.2c00014
  • Truong TTV, Chen CC, Kumar SR, Hu CC, Chen DW, Liu YK, Lue SJ. 2022. Prismatic silver nanoparticles decorated on graphene oxide sheets for superior antibacterial activity. Pharmaceutics. 14:924. doi:10.3390/pharmaceutics14050924
  • Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. 2021. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Reports. 11:1–12. doi:10.1038/s41598-021-00520-2
  • Van Dong P, H, Ha C, Binh LT, Kasbohm J. 2012. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2:9. doi:10.1186/2228-5326-2-9
  • Varaprasad K, Varaprasad K, Mohan YM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM. 2010. Hydrogel-silver nanoparticle composites: a new generation of antimicrobials. J Appl Polym Sci. 115:1199–1207. doi:10.1002/app.31249
  • Velsankar K, Parvathy G, Mohandoss S, Ravi G, Sudhahar S. 2022. Echinochloa frumentacea grains extract mediated synthesis and characterization of iron oxide nanoparticles: a greener nano drug for potential biomedical applications. J Drug Deliv Sci Technol. 76:103799. doi:10.1016/j.jddst.2022.103799
  • Verma C, Negi P, Pathania D, Sethi V, Gupta B. 2019. Preparation of pH-sensitive hydrogels by graft polymerization of itaconic acid on tragacanth gum. Polym Int. 68:344–350. doi:10.1002/pi.5739
  • Vo QK, Phung DD, Vo Nguyen QN, Hoang Thi H, Nguyen Thi NH, Nguyen Thi PP, Bach LG, Van Tan L. 2019. Controlled synthesis of triangular silver nanoplates by gelatin – chitosan mixture and the influence of their shape on antibacterial activity. Processes. 7:873–889. doi:10.3390/pr7120873
  • Zander ZK, Becker ML. 2018. Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett. 7:16–25. doi:10.1021/acsmacrolett.7b00879
  • Zhang K, Lin S, Feng Q, Dong C, Yang Y, Li G, Bian L. 2017. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater. 64:389–400. doi:10.1016/j.actbio.2017.09.039
  • Zhang Q, Li N, Goebl J, Lu Z, Yin Y. 2011. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc. 133:18931–18939. doi:10.1021/ja2080345
  • Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. 2020. Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant pseudomonas aeruginosa biofilms. J Proteome Res. 19:3109–3122. doi:10.1021/acs.jproteome.0c00114
  • Zhong Y, Liang G, Jin W, Jian Z, Wu Z, Chen Q, Cai Y, Zhang W. 2018. Preparation of triangular silver nanoplates by silver seeds capped with citrate-CTA+. RSC Adv. 8:28934–28943. doi:10.1039/c8ra04554b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.