Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 6
118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of lipophosphoramidates-based amphiphilic compounds on the formation of biofilms of marine bacteria

, , , , , & show all
Pages 591-605 | Received 14 Mar 2023, Accepted 21 Jul 2023, Published online: 16 Aug 2023

References

  • Ahmed K, Gribbon P, Jones MN. 2002. The application of confocal microscopy to the study of liposome adsorption onto bacterial biofilms. J Liposome Res. 12:285–300. doi: 10.1081/LPR-120016195.
  • Aldred N, Li GZ, Gao Y, Clare AS, Jiang SY. 2010. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 26:673–683. doi: 10.1080/08927014.2010.506677.
  • Allison DG. 2003. The biofilm matrix. Biofouling. 19:139–150. doi: 10.1080/0892701031000072190.
  • Almeida JR, Palmeira A, Campos A, Cunha I, Freitas M, Felpeto AB, Turkina MV, Vasconcelos V, Pinto M, Correia-da-Silva M, et al. 2020. Structure-antifouling activity relationship and molecular targets of bio-inspired(thio)xanthones. Biomolecules. 10:1126–1143. doi: 10.3390/biom10081126.
  • Alzieu C. 2000. Environmental impact of TBT: the French experience. Sci Total Environ. 258:99–102. doi: 10.1016/S0048-9697(00)00510-6.
  • Amara I, Miled W, Slama RB, Ladhari N. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol. 57:115–130. doi: 10.1016/j.etap.2017.12.001.
  • Antizar-Ladislao B. 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int. 34:292–308. doi: 10.1016/j.envint.2007.09.005.
  • Benda J, Stafslien S, Vanderwal L, Finlay JA, Clare AS, Webster DC. 2021. Surface modifying amphiphilic additives and their effect on the fouling-release performance of siloxane-polyurethane coatings. Biofouling. 37:309–326. doi: 10.1080/08927014.2021.1901891.
  • Berchel M, Le Gall T, Haelters J-P, Lehn P, Montier T, Jaffrès P-A. 2015. Cationic lipophosphoramidates containing a hydroxylated polar headgroup for improving gene delivery. Mol Pharm. 12:1902–1910. doi: 10.1021/mp500807k.
  • Berge JA,Brevik EM,Bjørge A,Følsvik N,Gabrielsen GW,Wolkers H. 2004. Organotins in marine mammals and seabirds from Norwegian territory. J Environ Monit. 6:108–112. doi: 10.1039/B311662J.
  • Beyer J, Song Y, Tollefsen KE, Berge JA, Tveiten L, Helland A, Øxnevad S, Schøyen M. 2022. The ecotoxicology of marine tributyltin (TBT) hotspots: a review. Mar Environ Res. 179:105689–105703. doi: 10.1016/j.marenvres.2022.105689.
  • Borisova D, Haladjova E, Kyulavska M, Petrov P, Pispas S, Stoitsova S, Paunova-Krasteva T. 2018. Application of cationic polymer micelles for the dispersal of bacterial biofilms. Eng Life Sci. 18:943–948. doi: 10.1002/elsc.201800040.
  • Buskens P, Wouters M, Rentrop C, Vroon Z. 2013. A brief review of environmentally benign antifouling and foul-release coatings for marine applications. J Coat Technol Res. 10:29–36. doi: 10.1007/s11998-012-9456-0.
  • Chen X, Qiu X, Hou M, Wu X, Dong Y, Ma Y, Yang L, Wei Y. 2019. Differences in zwitterionic sulfobetaine and carboxybetaine dextran-based hydrogels. Langmuir. 35:1475–1482. doi: 10.1021/acs.langmuir.8b01869.
  • Corre SSL, Berchel M, Couthon-Gourvès H, Haelters J-P, Jaffrès P-A. 2014. Atherton–Todd reaction: mechanism, scope and applications. Beilstein J Org Chem. 10:1166–1196. doi: 10.3762/bjoc.10.117.
  • Costerton JW. 1999. Introduction to biofilm. Int J Antimicrob Agents. 11:217–221. doi: 10.1016/S0924-8579(99)00018-7.
  • Dai GX, Xie QY, Ai XQ, Ma CF, Zhang GZ. 2019. Self-generating and self-renewing zwitterionic polymer surfaces for marine anti-biofouling. ACS Appl Mater Interfaces. 11:41750–41757. doi: 10.1021/acsami.9b16775.
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci. 21:731. doi: 10.3390/ijms21030731.
  • Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald P-J. 2015. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One. 10:e0131806. doi: 10.1371/journal.pone.0131806.
  • Dupraz V,Stachowski-Haberkorn S,Ménard D,Limon G,Akcha F,Budzinski H,Cedergreen N. 2018. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere. 209:801–814. doi: 10.1016/j.chemosphere.2018.06.139.
  • Egardt J, Nilsson P, Dahllöf I. 2017. Sediments indicate the continued use of banned antifouling compounds. Mar Pollut Bull. 125:282–288. doi: 10.1016/j.marpolbul.2017.08.035.
  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 14:563–575. doi: 10.1038/nrmicro.2016.94.
  • Galloway WRJD,Hodgkinson JT,Bowden SD,Welch M,Spring DR. 2011. Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev. 111:28–67. doi: 10.1021/cr100109t.
  • Grasland B, Mitalane J, Briandet R, Quemener E, Meylheuc T, Linossier I, Vallee-Rehel K, Haras D. 2003. Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling. 19:307–313. doi: 10.1080/0892701031000121041.
  • Guillard RRL, Ryther JH. 1962. Studies of marine planktonic diatoms: I. CycloTELla nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol. 8:229–239. doi: 10.1139/m62-029.
  • Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals: Proceedings – 1st Conference on Culture of Marine Invertebrate Animals Greenport. Boston, MA: Springer US; p. 29–60. doi: 10.1007/978-1-4615-8714-9_3.
  • Guo H, Chen P, Tian S, Ma Y, Li Q, Wen C, Yang J, Zhang L. 2020. Amphiphilic marine antifouling coatings based on a hydrophilic polyvinylpyrrolidone and hydrophobic fluorine–silicon-containing block copolymer. Langmuir. 36:14573–14581. doi: 10.1021/acs.langmuir.0c02329.
  • Hoch M. 2001. Organotin compounds in the environment - an overview. App Geochem. 16:719–743. doi: 10.1016/S0883-2927(00)00067-6.
  • Jung S, Song R, Kim J, Ko JH, Lee J. 2020. Controlling the release of amphiphilic liposomes from alginate hydrogel particles for antifouling paints. Langmuir. 36:1515–1522. doi: 10.1021/acs.langmuir.9b03415.
  • Karthauser JF, Koc J, Schonemann E, Wanka R, Aldred N, Clare AS, Rosenhahn A, Laschewsky A. 2022. Optimizing fouling resistance of poly(sulfabetaine)s through backbone and charge separation. Adv Materials Inter. 9:2200677–2200686. doi: 10.1002/admi.202200677.
  • Klein GL, Soum-Soutéra E, Guede Z, Bazire A, Compère C, Dufour A. 2011. The anti-biofilm activity secreted by a marine Pseudoalteromonas strain. Biofouling. 27:931–940. doi: 10.1080/08927014.2011.611878.
  • Ko JH, Lee KS, Park JS, Jung HS, Kwak MK. 2017. Amphiphilic hydrogel particles for antifouling paint and method of fabricating the same. United State Patent US 9,617.434 B2.
  • Kotrikla A. 2009. Environmental management aspects for TBT antifouling wastes from the shipyards. J Environ Manage. 90 Suppl 1:S77–S85. doi: 10.1016/j.jenvman.2008.07.017.
  • Martínez-Laiz G, MacLeod CD, Hesketh AV, Konecny CA, Ros M, Guerra-García JM, Harley CDG. 2022. The journey of hull-fouling mobile invaders: basibionts and boldness mediate dislodgement risk during transit. Bioofuling. 38:837–851. doi: 10.1080/08927014.2022.2138754.
  • Lau SK, Yong WF. 2021. Recent progress of zwitterionic materials as antifouling membranes for ultrafiltration, nanofiltration, and reverse osmosis. ACS Appl Polym Mater. 3:4390–4412. doi: 10.1021/acsapm.1c00779.
  • Le Gall T, Mathieu B, Hir S, Fraix A, Salaün J, Férec C, Lehn P, Jaffrès P-A, Montier T. 2013. Arsonium-containing lipophosphoramides, poly-functional nano-carriers for simultaneous antibacterial action and eukaryotic cell transfection. Adv Health Mat. 2:151–1524. doi: 10.1002/adhm.201200478.
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi: 10.1021/cr200350v.
  • Liu H, Yang W, Zhao W, Zhang J, Cai M, Pei X, Zhou F. 2020. Natural product inspired environmentally friendly strategy based on dopamine chemistry toward sustainable marine antifouling. ACS Omega. 5:21524–21530. doi: 10.1021/acsomega.0c02114.
  • Mahanta U, Khandelwal M, Deshpande AS. 2021. Antimicrobial surfaces: a review of synthetic approaches, applicability and outlook. J Mater Sci. 56:17915–17941. doi: 10.1007/s10853-021-06404-0.
  • Mamdoh TJ, Satheesh S. 2022. Antibiofilm activity of secondary metabolites of sponge-associated bacterium Alcanivorax sp. from the Red Sea. Front Mar Sci. 9:1–15. doi: 10.3389/fmars.2022.980418.
  • Nurioglu AG, Esteves ACC, de With G. 2015. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B. 3:6547–6570. doi: 10.1039/C5TB00232J.
  • O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310:91–109. doi: 10.1016/S0076-6879(99)10008-9.
  • Plouguerné E, de Souza LM, Sassaki GL, Hellio C, Trepos R, da Gama BAP, Pereira RC, Barreto-Bergter E. 2020. Glycoglycerolipids from sargassum vulgare as potential antifouling agents. Front Mar Sci. 7:1–9. doi: 10.3389/fmars.2020.00116.
  • Qian P-Y, Chen L, Xu Y. 2013. Mini-review: molecular mechanisms of antifouling compounds. Biofouling. 29:381–400. doi: 10.1080/08927014.2013.776546.
  • Qian P-Y, Cheng A, Wang R, Zhang R. 2022. Marine biofilms: diversity, interactions and biofouling. Nat Rev Microbiol. 20:671–684. doi: 10.1038/s41579-022-00744-7.
  • Raftos D, Hutchinson A. 1997. Effects of common estuarine pollutants on the immune reactions of tunicates. Biol Bull. 192:62–72. doi: 10.2307/1542576.
  • Scardino AJ, Zhang H, Cookson DJ, Lamb RN, Nys R d 2009. The role of nano-roughness in antifouling. Biofouling. 25:757–767. doi: 10.1080/08927010903165936.
  • Schardt L, Guajardo AM, Koc J, Clarke JL, Finlay JA, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, et al. 2022. Low fouling polysulfobetaines with variable hydrophobic content. Macromol Rapid Commun. 43:e2100589. doi: 10.1002/marc.202100589.
  • Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S. 2014. History on organotin compounds, from snails to humans. Environ Chem Lett. 12:117–137. doi: 10.1007/s10311-013-0449-8.
  • Swain G. 1998. Proceedings of the International Symposium on Seawater Drag Reduction. Newport, Rhode Island.
  • Tintillier F,Moriou C,Petek S,Fauchon M,Hellio C,Saulnier D,Ekins M,Hooper JNA,Al-Mourabit A,Debitus C. 2020. Quorum sensing inhibitory and antifouling activities of new bromotyrosine metabolites from the polynesian sponge pseudoceratina n. sp. Mar Drugs. 18:272. doi: 10.3390/md18050272.
  • van Zoelen W, Buss HG, Ellebracht NC, Lynd NA, Fischer DA, Finlay J, Hill S, Callow ME, Callow JA, Kramer EJ, et al. 2014. Sequence of hydrophobic and hydrophilic residues in amphiphilic polymer coatings affects surface structure and marine antifouling/fouling release properties. ACS Macro Lett. 3:364–368. doi: 10.1021/mz500090n.
  • Vindimian E, Robaut C, Fillion GA. 1983. Method for cooperative or noncooperative binding studies using nonlinear regression analysis on a microcomputer. J Appl Biochem. 5:261–268.
  • Voulvoulis N. 2006. Antifouling paint booster biocides: occurrence and partitioning in waterand sediments. In: Konstantinou IK, editor. Antifouling paint biocides. Berlin (Heidelberg): Springer; p. 155–170. doi: 10.1007/698_5_053.
  • WHO World Health Organization. 1990. Tributyltin Compounds. IPCS–Environ Health Criteria No 116.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi: 10.1016/j.porgcoat.2003.06.001.
  • Yonezawa T, Hasegawa S, Ahn J-Y, Cha B-Y, Teruya T, Hagiwara H, Nagai K, Woo J-T. 2007. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway. Biochem Biophys Res Commun. 355:10–15. doi: 10.1016/j.bbrc.2006.12.237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.