Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 7
115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Proximity to built structures on the seabed promotes biofilm development and diversity

, , &
Pages 706-718 | Received 21 Dec 2022, Accepted 30 Aug 2023, Published online: 25 Sep 2023

References

  • Alemán-Vega M, Sánchez-Lozano I, Hernández-Guerrero CJ, Hellio C, Quintana ET. 2020. Exploring antifouling activity of biosurfactants producing marine bacteria isolated from Gulf of California. Int J Mol Sci. 21:6068. doi: 10.3390/ijms21176068.
  • Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA + for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.
  • Antunes J, Leão P, Vasconcelos V. 2019. Marine biofilms: diversity of communities and of chemical cues. Environmental Microbiology Reports. 11:287–305. doi: 10.1111/1758-2229.12694.
  • Bae H, Jeong D, Kim H, Kim S, Lee S. 2014. Dynamic shift in community structures of biofilm-forming bacteria by the pre-treatment systems of seawater reverse osmosis processes. Desalination. 343:17–25. doi: 10.1016/j.desal.2013.12.020.
  • Bermont‐Bouis D, Janvier M, Grimont P, Dupont I, Vallaeys T. 2007. Both sulfate‐reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol. 102:161–168. doi: 10.1111/j.1365-2672.2006.03053.x.
  • Bienhold C, Zinger L, Boetius A, Ramette A. 2016. Diversity and biogeography of Bathyal and Abyssal seafloor bacteria. PLoS One. 11:e0148016. doi: 10.1371/journal.pone.0148016.
  • Bishop MJ, Mayer-Pinto M, Airoldi L, Firth LB, Morris RL, Loke LH, Hawkins SJ, Naylor LA, Coleman RA, Chee SY, et al. 2017. Effects of ocean sprawl on ecological connectivity: impacts and solutions. J Exp Mar Biol Ecol. 492:7–30. doi: 10.1016/j.jembe.2017.01.021.
  • BOEM 2020. Bureau of ocean energy management data center BOEM. https://www.data.boem.gov/.
  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 37:852–857. doi: 10.1038/s41587-019-0209-9.
  • Brauer JI, Makama Z, Bonifay V, Aydin E, Kaufman ED, Beech IB, Sunner J. 2015. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration. Biointerphases. 10:019003. doi: 10.1116/1.4906744.
  • BSEE. 2020. Bureau of safety and environmental enforcement (BSEE): Gulf of Mexico OCS region facts. New Orleans, Louisiana: Bureau of Safety and Environmental Enforcement;
  • Bugnot AB, Mayer-Pinto M, Airoldi L, Heery EC, Johnston EL, Critchley LP, Strain EMA, Morris RL, Loke LHL, Bishop MJ, et al. 2020. Current and projected global extent of marine built structures. Nat Sustain. 4:33–41. doi: 10.1038/s41893-020-00595-1.
  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13:581–583. doi: 10.1038/nmeth.3869.
  • Chiu BK, Kato S, McAllister SM, Field EK, Chan CS. 2017. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone. Front Microbiol. 8:1280. doi: 10.3389/fmicb.2017.01280.
  • Church RA, Warren DJ, Irion JB. 2009. Analysis of deepwater shipwrecks in the Gulf of Mexico: artificial reef effect of six World War II shipwrecks. Oceanog. 22:50–63. doi: 10.5670/oceanog.2009.38.
  • Clarke K, Warwick R. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser. 216:265–278. doi: 10.3354/meps216265.
  • Comeau AM, Li WKW, Tremblay JE, Carmack EC, Lovejoy C. 2011. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 6:e27492. doi: 10.1371/journal.pone.0027492.
  • Crawley MJ. 2012. The R book. Chichester (UK): John Wiley & Sons.
  • Damour M, Church R, Warren D, Horrell C, Hamdan L. 2015. Gulf of Mexico shipwreck corrosion, hydrocarbon exposure, microbiology, and archaeology (GOM-SCHEMA) project: studying the effects of a major oil spill on submerged cultural resources. Underwater Archaeology Proceedings of the 2015 Society for Historical Archaeology Conference.
  • Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon‐and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol. 13:3059–3074. doi: 10.1111/j.1462-2920.2011.02583.x.
  • Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 80:91–138. doi: 10.1128/MMBR.00037-15.
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci. 21:731. doi: 10.3390/ijms21030731.
  • Duarte CM, Pitt KA, Lucas CH, Purcell JE, Uye S-i, Robinson K, Brotz L, Decker MB, Sutherland KR, Malej A, et al. 2013. Is global ocean sprawl a cause of jellyfish blooms? Front Ecol Environ. 11:91–97. doi: 10.1890/110246.
  • Elifantz H, Horn G, Ayon M, Cohen Y, Minz D. 2013. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol Ecol. 85:348–357. doi: 10.1111/1574-6941.12122.
  • Emerson D. 2018. The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling. 34:989–1000. doi: 10.1080/08927014.2018.1526281.
  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL. 2007. A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One. 2:e667. doi: 10.1371/journal.pone.0000667.
  • Fagervold SK, Galand PE, Zbinden M, Gaill F, Lebaron P, Palacios C. 2012. Sunken woods on the ocean floor provide diverse specialized habitats for microorganisms. FEMS Microbiol Ecol. 82:616–628. doi: 10.1111/j.1574-6941.2012.01432.x.
  • Firth LB, Knights AM, Bridger D, Evans A, Mieskowska N, Moore PJ, O'Connor NE, Sheehan EV, Thompson RC, Hawkins SJ. 2016. Ocean sprawl: challenges and opportunities for biodiversity management in a changing world.
  • Fritts RK, LaSarre B, Stoner AM, Posto AL, McKinlay JB. 2017. A Rhizobiales-specific unipolar polysaccharide adhesin contributes to Rhodopseudomonas palustris biofilm formation across diverse photoheterotrophic conditions. Appl Environ Microbiol. 83:e03035-03016. doi: 10.1128/AEM.03035-16.
  • Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001.
  • Garrison CE, Field EK. 2020. Introducing a “core steel microbiome” and community functional analysis associated with microbially influenced corrosion. FEMS Microbiol Ecol. 97:fiaa237. doi: 10.1093/femsec/fiaa237.
  • Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, et al. 2016. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 7:214. doi: 10.3389/fmicb.2016.00214.
  • Grzegorczyk M, Pogorzelski SJ, Pospiech A, Boniewicz-Szmyt K. 2018. Monitoring of marine biofilm formation dynamics at submerged solid surfaces with multitechnique sensors. Front Mar Sci. 5:363. doi: 10.3389/fmars.2018.00363.
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 3:453–470. doi: 10.1146/annurev-marine-120709-142753.
  • Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM. 2013. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 7:685–696. doi: 10.1038/ismej.2012.143.
  • Hamdan LJ, Hampel JJ, Moseley RD, Mugge RL, Ray A, Salerno JL, Damour M. 2021. Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes. ISME J. 15:2883–2891. doi: 10.1038/s41396-021-00978-y.
  • Hampel JJ, Moseley RD, Hamdan LJ. 2022. Microbiomes respond predictably to built habitats on the seafloor. Mol Ecol. 1–10. doi: 10.1111/mec.16504.
  • Han Y, Perner M. 2015. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 6:989. doi: 10.3389/fmicb.2015.00989.
  • Heery EC, Bishop MJ, Critchley LP, Bugnot AB, Airoldi L, Mayer-Pinto M, Sheehan EV, Coleman RA, Loke LH, Johnston EL, et al. 2017. Identifying the consequences of ocean sprawl for sedimentary habitats. J Exp Mar Biol Ecol. 492:31–48. doi: 10.1016/j.jembe.2017.01.020.
  • Henry L-A, Mayorga-Adame CG, Fox AD, Polton JA, Ferris JS, McLellan F, McCabe C, Kutti T, Roberts JM. 2018. Ocean sprawl facilitates dispersal and connectivity of protected species. Sci Rep. 8:11346. doi: 10.1038/s41598-018-29575-4.
  • Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K. 2003. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol. 53:1801–1805. doi: 10.1099/ijs.0.02682-0.
  • Kaplan J. 2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 89:205–218. doi: 10.1177/0022034509359403.
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. doi: 10.1093/molbev/mst010.
  • Krayushkina D, Timmins-Schiffman E, Faux J, May DH, Riffle M, Harvey HR, Nunn BL. 2019. Growth phase proteomics of the heterotrophic marine bacterium Ruegeria pomeroyi. Sci Data. 6:303. doi: 10.1038/s41597-019-0308-y.
  • Lawes JC, Neilan BA, Brown MV, Clark GF, Johnston EL. 2016. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. Biofouling. 32:57–69. doi: 10.1080/08927014.2015.1126581.
  • Lee J, Ray R, Lemieux E, Falster A, Little B. 2004. An evaluation of carbon steel corrosion under stagnant seawater conditions. Biofouling. 20:237–247. doi: 10.1080/08927010400013274.
  • Lee JS, McBeth JM, Ray RI, Little BJ, Emerson D. 2013. Iron cycling at corroding carbon steel surfaces. Biofouling. 29:1243–1252. doi: 10.1080/08927014.2013.836184.
  • Lee JS, Ray RI, Little BJ, Lemieux E. 2005. Evaluation of deoxygenation as a corrosion control measure for ballast tanks. Corrosion. 61:1173–1188. doi: 10.5006/1.3278153.
  • Leys C, Ley C, Klein O, Bernard P, Licata L. 2013. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Social Psychol. 49:764–766. doi: 10.1016/j.jesp.2013.03.013.
  • Li Y, Jing H, Xia X, Cheung S, Suzuki K, Liu H. 2018. Metagenomic insights into the microbial community and nutrient cycling in the western subarctic Pacific Ocean. Front Microbiol. 9:623. doi: 10.3389/fmicb.2018.00623.
  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. 2011. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5:169–172. doi: 10.1038/ismej.2010.133.
  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17:10–12. doi: 10.14806/ej.17.1.200.
  • Marzinelli EM, Qiu Z, Dafforn KA, Johnston EL, Steinberg PD, Mayer-Pinto M. 2018. Coastal urbanisation affects microbial communities on a dominant marine holobiont. NPJ Biofilms Microbiomes. 4:1–7. doi: 10.1038/s41522-017-0044-z.
  • McAllister SM, Moore RM, Gartman A, Luther IG, Emerson D, Chan CS. 2019. The Fe (II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol. 95:fiz015. doi: 10.1093/femsec/fiz015.
  • McBeth JM, Emerson D. 2016. In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol. 7:767. doi: 10.3389/fmicb.2016.00767.
  • McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D. 2011. Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol. 77:1405–1412. doi: 10.1128/AEM.02095-10.
  • Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. 2018. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 115: e 6799–E6807. doi: 10.1073/pnas.1802470115.
  • Miksch S, Meiners M, Meyerdierks A, Probandt D, Wegener G, Titschack J, Jensen MA, Ellrott A, Amann R, Knittel K. 2021. Bacterial communities in temperate and polar coastal sands are seasonally stable. ISME Commun. 1:29. doi: 10.1038/s43705-021-00028-w.
  • Minich JJ, Nowak B, Elizur A, Knight R, Fielder S, Allen EE. 2021. Impacts of the marine hatchery built environment, water and feed on mucosal microbiome colonization across ontogeny in Yellowtail Kingfish, Seriola lalandi. Front Mar Sci. 8:676731. doi: 10.3389/fmars.2021.676731.
  • Minich JJ, Poore GD, Jantawongsri K, Johnston C, Bowie K, Bowman J, Knight R, Nowak B, Allen EE. 2020. Microbial ecology of Atlantic salmon (Salmo salar) hatcheries: impacts of the built environment on fish mucosal microbiota. Appl Environ Microbiol. 86:e00411-00420. doi: 10.1128/AEM.00411-20.
  • Moseley RD, Hampel JJ, Mugge RL, Hamdan LJ. 2022. Historic wooden shipwrecks influence dispersal of deep-sea biofilms. Front Mar Sci. 9:873445. doi: 10.3389/fmars.2022.873445.
  • Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L. 2018. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol. 200:1447–1456. doi: 10.1007/s00203-018-1559-2.
  • Muck S, De Corte D, Clifford EL, Bayer B, Herndl GJ, Sintes E. 2019. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol. 10:2141. doi: 10.3389/fmicb.2019.02141.
  • Mugge RL, Brock ML, Salerno JL, Damour M, Church RA, Lee J, Hamdan LJ. 2019a. Deep sea biofilms, historic shipwreck preservation and the Deepwater Horizon spill. Front Mar Sci. 6:48. doi: 10.3389/fmars.2019.00048.
  • Mugge RL, Lee JS, Brown TT, Hamdan LJ. 2019b. Marine biofilm bacterial community response and carbon steel loss following Deepwater Horizon spill contaminant exposure. Biofouling. 35:870–882. doi: 10.1080/08927014.2019.1673377.
  • Mugge RL, Salerno JL, Hamdan LJ. 2021. Microbial functional responses in marine biofilms exposed to deepwater horizon spill contaminants. Front Microbiol. 12:636054. doi: 10.3389/fmicb.2021.636054.
  • Mumford AC, Adaktylou IJ, Emerson D. 2016. Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol. 82:6799–6807. doi: 10.1128/AEM.01990-16.
  • Nadell CD, Drescher K, Foster KR. 2016. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 14:589–600. doi: 10.1038/nrmicro.2016.84.
  • Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, et al. 2013. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 77:342–356. doi: 10.1128/MMBR.00051-12.
  • Petrova OE, Sauer K. 2016. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol. 30:67–78. doi: 10.1016/j.mib.2016.01.004.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: d 590–D596. doi: 10.1093/nar/gks1219.
  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4:e2584. doi: 10.7717/peerj.2584.
  • Salerno JL, Little B, Lee J, Hamdan LJ. 2018. Exposure to crude oil and chemical dispersant may impact marine microbial biofilm composition and steel corrosion. Front Mar Sci. 5:196. doi: 10.3389/fmars.2018.00196.
  • Schulze A, Erdner DL, Grimes CJ, Holstein DM, Miglietta MP. 2020. Artificial reefs in the Northern Gulf of Mexico: community ecology amid the “ocean sprawl”. Front Mar Sci. 7:447. doi: 10.3389/fmars.2020.00447.
  • Taboada S, Bas M, Avila C, Riesgo A. 2020. Phylogenetic characterization of marine microbial biofilms associated with mammal bones in temperate and polar areas. Mar Biodivers. 50:1–17. doi: 10.1007/s12526-020-01082-8.
  • Techtmann SM, Fitzgerald KS, Stelling SC, Joyner DC, Uttukar SM, Harris AP, Alshibli NK, Brown SD, Hazen TC. 2016. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions. Front Environ Sci. 4:33. doi: 10.3389/fenvs.2016.00033.
  • Tláskal V, Brabcová V, Větrovský T, López-Mondéjar R, Monteiro LMO, Saraiva JP, da Rocha UN, Baldrian P. 2021. Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood. Sci Data. 8:198. doi: 10.1038/s41597-021-00987-8.
  • Valdez B, Ramirez J, Eliezer A, Schorr M, Ramos R, Salinas R. 2016. Corrosion assessment of infrastructure assets in coastal seas. J Marine Eng Technol. 15:124–134. doi: 10.1080/20464177.2016.1247635.
  • Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. 2021. Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium predominant in deep-sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Front Microbiol. 12:626705. doi: 10.3389/fmicb.2021.626705.
  • Whalan S, Webster N. 2014. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean. Sci Rep. 4:1–5.
  • Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York (NY): Springer.
  • Zhang W, Ding W, Li Y-X, Tam C, Bougouffa S, Wang R, Pei B, Chiang H, Leung P, Lu Y, et al. 2019a. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat Commun. 10:517. doi: 10.1038/s41467-019-08463-z.
  • Zhang Y, Ma Y, Duan J, Li X, Wang J, Hou B. 2019b. Analysis of marine microbial communities colonizing various metallic materials and rust layers. Biofouling. 35:429–442. doi: 10.1080/08927014.2019.1610881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.