Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 7
352
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium

, & ORCID Icon
Pages 763-774 | Received 12 Jul 2023, Accepted 26 Sep 2023, Published online: 05 Oct 2023

References

  • Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, et al. 2021. Phage-encoded endolysins. Antibiotics (Basel). 10:124. doi: 10.3390/antibiotics10020124.
  • Amankwah S, Abdella K, Kassa T. 2021. Bacterial biofilm destruction: a focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnol Sci Appl. 14:161–177. doi: 10.2147/NSA.S325594.
  • Azeredo J, García P, Drulis-Kawa Z. 2021. Targeting biofilms using phages and their enzymes. Curr Opin Biotechnol. 68:251–261. doi: 10.1016/j.copbio.2021.02.002.
  • Bielke L, Higgins S, Donoghue A, Donoghue D, Hargis BM. 2007. Salmonella host range of bacteriophages that infect multiple genera. Poult Sci. 86:2536–2540. doi: 10.3382/ps.2007-00250.
  • Brimacombe CA, Stevens A, Jun D, Mercer R, Lang AS, Beatty JT. 2013. Quorum-sensing regulation of a capsular polysaccharide receptor for the Rhodobacter capsulatus gene transfer agent (RcGTA). Mol Microbiol. 87:802–817. doi: 10.1111/mmi.12132.
  • Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S, Ceciliani F, Galizzi A, Senesi S. 2005. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol. 187:5356–5366. doi: 10.1128/JB.187.15.5356-5366.2005.
  • Chang C, Yu X, Guo W, Guo C, Guo X, Li Q, Zhu Y. 2022. Bacteriophage-mediated control of biofilm: a promising new dawn for the future. Front Microbiol. 13:825828. doi: 10.3389/fmicb.2022.825828.
  • Chen X, Liu M, Zhang P, Xu M, Yuan W, Bian L, Liu Y, Xia J, Leung SSY. 2022. Phage-derived depolymerase as an antibiotic adjuvant against multidrug-resistant Acinetobacter baumannii. Front Microbiol. 13:845500. doi: 10.3389/fmicb.2022.845500.
  • Chmielewski RAN, Frank JF. 2003. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2:22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x.
  • Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. 2017. Antibiotic treatment of biofilm infections. APMIS. 125:304–319. doi: 10.1111/apm.12673.
  • Colavecchio A, Cadieux B, Lo A, Goodridge LD. 2017. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family - A Review. Front Microbiol. 8:1108. doi: 10.3389/fmicb.2017.01108.
  • Dawan J, Ahn J. 2021. Effectiveness of antibiotic combination treatments to control heteroresistant Salmonella Typhimurium. Microb Drug Resist. 27:441–449. doi: 10.1089/mdr.2020.0027.
  • Dawan J, Ahn J. 2022. Assessment of phage-mediated control of antibiotic-resistant Salmonella Typhimurium during the transition from planktonic to biofilm cells. Microb Pathog. 162:105365. doi: 10.1016/j.micpath.2021.105365.
  • Dimitriu T, Kurilovich E, Łapińska U, Severinov K, Pagliara S, Szczelkun MD, Westra ER. 2022. Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition. Cell Host Microbe. 30:31–40.e35. doi: 10.1016/j.chom.2021.11.014.
  • Ding Y, Zhang Y, Huang C, Wang J, Wang X. 2020. An endolysin LysSE24 by bacteriophage LPSE1 confers specific bactericidal activity against multidrug-resistant Salmonella strains. Microorganisms. 8:737. doi: 10.3390/microorganisms8050737.
  • Durão P, Balbontín R, Gordo I. 2018. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 26:677–691. doi: 10.1016/j.tim.2018.01.005.
  • Gontijo MTP, Jorge GP, Brocchi M. 2021. Current status of endolysin-based treatments against Gram-negative bacteria. Antibiotics (Basel). 10:1143. doi: 10.3390/antibiotics10101143.
  • Gutiérrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A, Lavigne R, García P. 2015. Role of the pre-neck appendage protein (Dpo7) from phage vB_SepiS-phiIPLA7 as an anti-biofilm agent in Staphylococcal species. Front Microbiol. 6:1315. doi: 10.3389/fmicb.2015.01315.
  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. 2014. Bacteriophages and biofilms. Antibiotics. 3:270–284. doi: 10.3390/antibiotics3030270.
  • Hasan M, Ahn J. 2022. Evolutionary dynamics between phages and bacteria as a possible approach for designing effective phage therapies against antibiotic-resistant bacteria. Antibiotics (Basel). 11:915. doi: 10.3390/antibiotics11070915.
  • Kim J, Kim J-C, Ahn J. 2022. Assessment of bacteriophage-encoded endolysin as a potent antimicrobial agent against antibiotic-resistant Salmonella Typhimurium. Microb Pathog. 168:105576. doi: 10.1016/j.micpath.2022.105576.
  • Kim S, Lee DW, Jin JS, Kim J. 2020. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Glob Antimicrob Resist. 22:32–39. doi: 10.1016/j.jgar.2020.01.005.
  • Klimek K, Tyśkiewicz K, Miazga-Karska M, Dębczak A, Rój E, Ginalska G. 2021. Bioactive compounds obtained from Polish “Marynka” hop variety using efficient two-step supercritical fluid extraction and comparison of their antibacterial, cytotoxic, and anti-proliferative activities in vitro. Molecules. 26:2366. doi: 10.3390/molecules26082366.
  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 15:740–755. doi: 10.1038/nrmicro.2017.99.
  • Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 8:317–327. doi: 10.1038/nrmicro2315.
  • Latka A, Drulis-Kawa Z. 2020. Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase. Sci Rep. 10:20338. doi: 10.1038/s41598-020-77198-5.
  • Laure NN, Ahn J. 2022. Antibiofilm activity of β-lactam/β-lactamase inhibitor combination against multidrug-resistant Salmonella Typhimurium. Pathogens. 11:349. doi: 10.3390/pathogens11030349.
  • Li X, Sun L, Zhang P, Wang Y. 2021. Novel approaches to combat medical device-associated biofilms. Coatings. 11:294. doi: 10.3390/coatings11030294.
  • Li XH, Lee JH. 2017. Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol. 55:753–766. doi: 10.1007/s12275-017-7274-x.
  • Lin W, Zeng J, Wan K, Lv L, Guo L, Li X, Yu X. 2018. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environ Int. 120:63–71. doi: 10.1016/j.envint.2018.07.035.
  • Luo Y, Yang Q, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J Microbiol Biotechnol. 31:1–7. doi: 10.4014/jmb.2010.10021.
  • Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z. 2018. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol. 9:2517. doi: 10.3389/fmicb.2018.02517.
  • Michaelis C, Grohmann E. 2023. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics (Basel). 12:328. doi: 10.3390/antibiotics12020328.
  • Olsen NMC, Thiran E, Hasler T, Vanzieleghem T, Belibasakis GN, Mahillon J, Loessner MJ, Schmelcher M. 2018. Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses. 10:438. doi: 10.3390/v10080438.
  • Olszak T, Shneider MM, Latka A, Maciejewska B, Browning C, Sycheva LV, Cornelissen A, Danis-Wlodarczyk K, Senchenkova SN, Shashkov AS, et al. 2017. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep. 7:16302. doi: 10.1038/s41598-017-16411-4.
  • Pankey GA, Sabath LD. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 38:864–870. doi: 10.1086/381972.
  • Park DW, Park JH. 2020. Characterization of endolysin LysECP26 derived from rV5-like phage vB_EcoM-ECP26 for inactivation of Escherichia coli O157: h 7. J Microbiol Biotechnol. 30:1552–1558. doi: 10.4014/jmb.2005.05030.
  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. 2020. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 7:105–109. doi: 10.1080/26415275.2020.1796674.
  • Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. 2016. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 100:2141–2151. doi: 10.1007/s00253-015-7247-0.
  • Principi N, Silvestri E, Esposito S. 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 10:513. doi: 10.3389/fphar.2019.00513.
  • Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. 2021. Endolysin, a promising solution against antimicrobial resistance. Antibiotics (Basel). 10:1277. doi: 10.3390/antibiotics10111277.
  • Rai S, Kumar A. 2022. Bacteriophage therapeutics to confront multidrug-resistant Acinetobacter baumannii - a global health menace. Environ Microbiol Rep. 14:347–364. doi: 10.1111/1758-2229.12988.
  • Rajer F, Sandegren L. 2022. The role of antibiotic resistance genes in the fitness cost of multiresistance plasmids. MBio. 13:e03552–03521. doi: 10.1128/mbio.03552-21.
  • Rice CJ, Kelly SA, O'Brien SC, Melaugh EM, Ganacias JCB, Chai ZH, Gilmore BF, Skvortsov T. 2021. Novel phage-derived depolymerase with activity against Proteus mirabilis biofilms. Microorganisms. 9:2172. doi: 10.3390/microorganisms9102172.
  • Roach DR, Donovan DM. 2015. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage. 5:e1062590. doi: 10.1080/21597081.2015.1062590.
  • Rossi C, Chaves-López C, Serio A, Casaccia M, Maggio F, Paparella A. 2022. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: an updated review. Crit Rev Food Sci Nutr. 62:2172–2191. doi: 10.1080/10408398.2020.1851169.
  • Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T. 2022. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 20:608–620. doi: 10.1038/s41579-022-00767-0.
  • Shahed-Al-Mahmud M, Roy R, Sugiokto FG, Islam MN, Lin M-D, Lin L-C, Lin N-T. 2021. Phage φAB6-borne depolymerase combats Acinetobacter baumannii biofilm formation and infection. Antibiotics (Basel). 10:279. doi: 10.3390/antibiotics10030279.
  • Sharma K, Pagedar Singh A. 2018. Antibiofilm effect of DNase against single and mixed species biofilm. Foods. 7:42. doi: 10.3390/foods7030042.
  • Son B, Kong M, Cha Y, Bai J, Ryu S. 2020. Simultaneous control of Staphylococcus aureus and Bacillus cereus using a hybrid endolysin LysB4EAD-LysSA11. Antibiotics (Basel). 9:906. doi: 10.3390/antibiotics9120906.
  • Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. 2022. Recent advances on the spectroscopic characterization of microbial biofilms: a critical review. Anal Chim Acta. 1195:339433. doi: 10.1016/j.aca.2022.339433.
  • Tam VH, Schilling AN, Vo G, Kabbara S, Kwa AL, Wiederhold NP, Lewis RE. 2005. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 49:3624–3630. doi: 10.1128/aac.49.9.3624-3630.2005.
  • Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. 2021. Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel). 10:175. doi: 10.3390/antibiotics10020175.
  • Vaara M, Vaara T. 1983. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother. 24:114–122. doi: 10.1128/aac.24.1.114.
  • van der Horst MA, Schuurmans JM, Smid MC, Koenders BB, ter Kuile BH. 2011. De vovo acquisition of resistance to three antibiotics by Escherichia coli. Microb Drug Resist. 17:141–147. doi: 10.1089/mdr.2010.0101.
  • Van Tassell ML, Angela Daum M, Kim JS, Miller MJ. 2016. Creative lysins: listeria and the engineering of antimicrobial enzymes. Curr Opin Biotechnol. 37:88–96. doi: 10.1016/j.copbio.2015.10.006.
  • Wang W-Q, Feng X-C, Shi H-T, Wang Y-M, Jiang C-Y, Xiao Z-J, Xu Y-J, Zhang X, Yuan Y, Ren N-Q. 2023. Biofilm inhibition based on controlling the transmembrane transport and extracellular accumulation of quorum sensing signals. Environ Res. 221:115218. doi: 10.1016/j.envres.2023.115218.
  • Wiguna, OD, Waturangi, DE, Yogiara. 2022. Bacteriophage DW-EC with the capability to destruct and inhibit biofilm formed by several pathogenic bacteria. Sci Rep.12:18539. doi: 10.1038/s41598-022-22042-1.
  • Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE. 2010. Chronic wounds and the medical biofilm paradigm. J Wound Care. 19:45–53. doi: 10.12968/jowc.2010.19.2.46966.
  • Xu H, Lee H-Y, Ahn J. 2011. Characteristics of biofilm formation by selected foodboren pathogens. J Food Saf. 31:91–97. doi: 10.1111/j.1745-4565.2010.00271.x.
  • Zhang Y, Huang H-H, Duc HM, Masuda Y, Honjoh K-i, Miyamoto T. 2021. Endolysin LysSTG2: characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol. 98:103791. doi: 10.1016/j.fm.2021.103791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.