Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 8
791
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The potential role of biofilms in promoting fouling formation in radioactive discharge pipelines

, , , , , & show all
Pages 785-799 | Received 24 Jan 2023, Accepted 05 Oct 2023, Published online: 25 Oct 2023

References

  • Anderson C, Pedersen K, Jakobsson AM. 2006. Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks. Geomicrobiol J. 23:15–29. doi:10.1080/01490450500399946.
  • Antelman MS, Harris FJ. 1982. Electrochemical series. The encyclopedia of chemical electrode potentials, p. 1–81. Boston (MA): Springer. doi:10.1007/978-1-4613-3374-6_1.
  • Barton F, Shaw S, Morris K, Graham J, Lloyd JR. 2022. Impact and control of fouling in radioactive environments. Prog Nucl Energy. 148:104215. Elsevier. doi:10.1016/j.pnucene.2022.104215.
  • Bixler GD, Bhushan B. 2012. Biofouling: lessons from nature. Philos Trans A Math Phys Eng Sci. 370:2381–2417. doi:10.1098/rsta.2011.0502.
  • BNFL. 2004. SIXEP sea discharge line solids – initial analysis and results.
  • British Nuclear Group. 2005. SIXEP Sea line solids : review of mechanisms of formation.
  • Chen X, Stewart PS. 1996. Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol. 30:2078–2083. doi:10.1021/es9509184.
  • Claesson PM, Poptoshev E, Blomberg E, Dedinaite A. 2005. Polyelectrolyte-mediated surface interactions. Adv Colloid Interface Sci. 114-115:173–187. doi:10.1016/j.cis.2004.09.008.
  • Colica G, Caparrotta S, De Philippis R. 2012. Selective biosorption and recovery of Ruthenium from industrial effluents with Rhodopseudomonas palustris strains. Appl Microbiol Biotechnol. 95:381–387. doi:10.1007/s00253-012-4053-9.
  • Dehghani A, Mostafatabar AH, Bahlakeh G, Ramezanzadeh B. 2020. A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation. J Mol Liq. Elsevier B.V., 316:113914. doi:10.1016/j.molliq.2020.113914.
  • Dyer A, Chimedtsogzol A, Campbell L, Williams C. 2006. Uptake of caesium and strontium radioisotopes by natural zeolites from Mongolia. Microporous Mesoporous Mater. 95:172–175. doi:10.1016/j.micromeso.2006.05.013.
  • Foster L, Boothman C, Ruiz-Lopez S, Boshoff G, Jenkinson P, Sigee D, Pittman JK, Morris K, Lloyd JR. 2020. Microbial bloom formation in a high pH spent nuclear fuel pond. Sci Total Environ. 720:137515. doi:10.1016/j.scitotenv.2020.137515.
  • Foster L, Muhamadali H, Boothman C, Sigee D, Pittman JK, Goodacre R, Morris K, Lloyd JR. 2020. Radiation tolerance of Pseudanabaena catenata, a Cyanobacterium relevant to the first generation Magnox storage pond. Front Microbiol. 11:515. doi:10.3389/fmicb.2020.00515.
  • Gallup DL, von Hirtz P. 2015. Control of silica-based scales in cooling and geothermal systems, mineral scales and deposits: scientific and technological approaches. Amsterdam, Netherlands: Elsevier B.V. doi:10.1016/B978-0-444-63228-9.00022-X.
  • Gangappa R, Farrier A, Macaskie LE. 2017. Eu3+ sequestration by biogenic nano-hydroxyapatite synthesized at neutral and alkaline pH. Geomicrobiol J. Taylor & Francis, 34:753–759. doi:10.1080/01490451.2016.1261966.
  • Gao R, Wang Y, Zhang Y, Tong J, Dai W. 2017. Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol Biotechnol Equip. Taylor & Francis, 31:527–534. doi:10.1080/13102818.2017.1292148.
  • George RP, Kamachi Mudali U, Raj B. 2016. Characterizing biofilms for biofouling and microbial corrosion control in cooling water systems. ACMM. 63:477–489. doi:10.1108/ACMM-07-2014-1401.
  • Gibson JF, Poole RK, Hughes MN, Rees JF. 1986. Ruthenium nitrosyl complexes: toxicity to Escherichia coli and yeasts and uptake by marine bacteria. Arch Environ Contam Toxicol. 15:519–523. doi:10.1007/BF01056564.
  • Gomez-Bolivar J, Mikheenko IP, Orozco RL, Sharma S, Banerjee D, Walker M, Hand RA, Merroun ML, Macaskie LE. 2019. Synthesis of Pd/Ru bimetallic nanoparticles by Escherichia coli and potential as a catalyst for upgrading 5-hydroxymethyl furfural into liquid fuel precursors. Front Microbiol. 10:1276. doi:10.3389/fmicb.2019.01276.
  • Gupta PK, Mishra L. 2020. Ecofriendly ruthenium-containing nanomaterials: synthesis, characterization, electrochemistry, bioactivity and catalysis. Nanoscale Adv. 2:1774–1791. Royal Society of Chemistry, doi:10.1039/d0na00051e.
  • Haack EA, Warren LA. 2003. Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage. Environ Sci Technol. 37:4138–4147. doi:10.1021/es026274z.
  • Hrbek J, van Campen DG, Malik IJ. 1995. The early stages of ruthenium oxidation. Journal of Vacuum Science & Technology A: vacuum, Surfaces, and Films. 13:1409–1412. doi:10.1116/1.579573.
  • Jena A, Pradhan S, Mishra S, Sahoo NK. 2021. Evaluation of europium biosorption using Deinococcus radiodurans. Environ Process. 8:251–265. doi:10.1007/s40710-020-00479-8.
  • Jones R. 2016. Formation and attachment of solids within a pipeline emanating from a nuclear efflunet treatment plant [thesis]. Manchester (UK): University of Manchester.
  • Kabiri-Tadi M, Faghihian H. 2011. Removal of ruthenium from aqueous solution by clinoptilolite. Clays Clay Miner. 59:34–41. doi:10.1346/CCMN.2011.0590106.
  • Kharazmi A, Giwercman B, Hoiby N. 1999. Robbins device in biofilm research. Methods Enzymol. 310:207–215. doi:10.1016/s0076-6879(99)10018-1.
  • Kora AJ, Bhaskarapillai A, Toleti SR. 2016. Exopolymer produced by Pseudomonas aeruginosa: a super sorbent for ruthenium. Separation Science and Technology (Philadelphia). Taylor & Francis, 51:1–6. doi:10.1080/01496395.2016.1166133.
  • Levenets VV, Lonin AY, Omelnik OP, Shchur AO. 2020. Studies of the features of the sorption of an europium by natural and synthetic zeolites for using it in the nuclear energy. Probl Atomic Sci Technol. 125:121–126. doi:10.46813/2020-125-121.
  • Li J, Tang M, Ye Z, Chen L, Zhou Y. 2017. Scale formation and control in oil and gas fields: a review. J Dispersion Sci Technol. 38:661–670. Taylor & Francis. doi:10.1080/01932691.2016.1185953.
  • Lin CC. 2009. A review of corrosion product transport and radiation field buildup in boiling water reactors. Prog Nucl Energy. 51:207–224. Elsevier. doi:10.1016/j.pnucene.2008.05.005.
  • Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. 2016. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol. 50:8954–8976. doi:10.1021/acs.est.6b00835.
  • Liu Y, Lam MC, Fang HHP. 2001. Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol. 43:59–66. doi:10.2166/wst.2001.0340.
  • Lloyd JR. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev. 27:411–425. doi:10.1016/S0168-6445(03)00044-5.
  • Lloyd JR, Macaskie LE. 2000. Bioremediation of radionuclide‐containing wastewaters. In: Lovley DR, editors. Environmental microbe–metal interactions. Washington (DC): American Society for Microbiology; pp. 277–327.
  • Lloyd JR, Renshaw JC. 2005. Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol. 16:254–260. doi:10.1016/j.copbio.2005.04.012.
  • Macadam J, Parsons SA. 2004. Calcium carbonate scale control, effect of material and inhibitors. Water Sci Technol. 49:153–159. doi:10.2166/wst.2004.0112.
  • Magnox North. 2008. Information in support of applications by Magnox Electric Limited under the Radioactive Substances Act 1993 To Dispose And Discharge Radioactive Wastes From Chapelcross Site Hefin Griffiths Robert Millard Contents P.
  • Maleke M, Valverde A, Vermeulen JG, Cason E, Gomez-Arias A, Moloantoa K, Coetsee-Hugo L, Swart H, Van Heerden E, Castillo J. 2019. Biomineralization and bioaccumulation of europium by a thermophilic metal resistant bacterium. Front Microbiol. 10:81. doi:10.3389/fmicb.2019.00081.
  • Mamba BB, Nyembe DW, Mulaba-Bafubiandi AF. 2009. Removal of copper and cobalt from aqueous solutions using natural clinoptilolite. Water SA. 35:307–314. doi:10.4314/wsa.v35i3.76768.
  • Miyazaki A, Balint I, Aika KI, Nakano Y. 2001. Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis. J Catal. 204:364–371. doi:10.1006/jcat.2001.3418.
  • Morgan DJ. 2015. Resolving ruthenium: XPS studies of common ruthenium materials. Surface & Interface Analysis. 47:1072–1079. doi:10.1002/sia.5852.
  • Muryanto, S., Bayuseno, A.P., Ma’mun, H., Usamah, M., Jotho, (2014) ‘Calcium carbonate scale formation in pipes: effect of flow rates, temperature, and malic acid as additives on the mass and morphology of the scale. Proc Chem. 9:69–76. Elsevier. doi:10.1016/j.proche.2014.05.009.
  • Myers CR, Nealson KH. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. American Association for the Advancement of Science Stable. http://www.jstor.org/stable/1701057. Science, 240(4857): 1319–1321.
  • Neal AL, Lowe K, Daulton TL, Jones-Meehan J, Little BJ. 2002. Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction. Appl Surf Sci. 202:150–159. doi:10.1016/S0169-4332(02)00550-0.
  • Nexia Solutions. 2006. Sea discharge line solids analysis and biocide investigations summary report.
  • Olajire AA. 2015. A review of oilfield scale management technology for oil and gas production. J Petrol Sci Eng. 135:723–737. doi:10.1016/j.petrol.2015.09.011.
  • Omajali JB, Gomez-Bolivar J, Mikheenko IP, Sharma S, Kayode B, Al-Duri B, Banerjee D, Walker M, Merroun ML, Macaskie LE. 2019. Novel catalytically active Pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans. Sci Rep. 9:4715. Springer US. doi:10.1038/s41598-019-40312-3.
  • Owens S, Higgins-Bos M, Bankhead M, Austin J. 2015. Using chemical and process modelling to design, understand and improve an effluent treatment plant. NNL Sci. 3:1–13.
  • Ozaki T, Gillow JB, Kimura T, Ohnuki T, Yoshida Z, Francis AJ. 2004. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms. Radiochim Acta. 92:741–748. doi:10.1524/ract.92.9.741.55006.
  • Palmer JL, Gunter ME. 2001. The effects of time, temperature, and concentration on Sr2+ exchange in clinoptilolite in aqueous solutions. Am Mineral. 86:431–437. doi:10.2138/am-2001-0406.
  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Spectrom. 26:2508–2518. doi:10.1039/c1ja10172b.
  • Prusek T, Oukacine F, Hervouet C. 2017. A Methodology to simulate the impact of tube fouling on steam generator performance with a thermal-hydraulic code. Heat Transfer Eng. 38:721–729. Taylor & Francis. doi:10.1080/01457632.2016.1206413.
  • Rao TS, Kora AJ, Chandramohan P, Panigrahi BS, Narasimhan SV. 2009. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor. Biofouling. 25:581–591. doi:10.1080/08927010903016543.
  • Rao TS, Nair KVK. 1998. Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater. Corros Sci. 40:1821–1836. doi:10.1016/S0010-938X(98)00079-1.
  • Sandt C, Smith Palmer T, Pink J, Pink D. 2008. Quantification of local water and biomass in wild type PA01 biofilms by confocal Raman microspectroscopy. J Microbiol Methods. 75:148–152. doi:10.1016/j.mimet.2008.05.012.
  • Sani RK, Peyton BM, Dohnalkova A. 2008. Comparison of uranium(VI) removal by Shewanella oneidensis MR-1 in flow and batch reactors. Water Res. 42:2993–3002. doi:10.1016/j.watres.2008.04.003.
  • Sano N, Nakanishi Y, Sugiura K, Yamanaka H, Tamon H, Saito N, Konishi Y. 2016. Synthesis of bimetallic Pt–Ru nanoparticles by bioreduction using Shewanella algae for application to direct methanol fuel cell. J Chem Eng Japan / JCEJ. 49:488–492. doi:10.1252/jcej.15we077.
  • Sarró MI, García AM, Moreno DA. 2005. Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water. Int Microbiol. 8:223–230. doi: im2305032.[pii].
  • Satpathy KK, Kumar A, Sahu G, Biswas S, M S. 2010. Biofouling and its control in seawater cooled power plant cooling water system – a review, nuclear power. Rijeka: Sciyo. doi:10.5772/9912.
  • Shamim S. 2018. Biosorption of heavy metals. Intech. Available at: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
  • Southam HM, Butler JA, Chapman JA, Poole RK. 2017. The microbiology of ruthenium complexes. In: Poole RK, editors. Advances in microbial physiology. 1st ed., Vol. 71. London (UK): Elsevier. doi:10.1016/bs.ampbs.2017.03.001.
  • Sulaymon AH, Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH. 2014. Biosorption of heavy metals: a review. Available at: https://www.researchgate.net/publication/266795209.
  • Supekar OD, Brown JJ, Greenberg AR, Gopinath JT, Bright VM. 2018. Real-time detection of reverse-osmosis membrane scaling via Raman spectroscopy. Ind Eng Chem Res. 57:16021–16026. doi:10.1021/acs.iecr.8b01272.
  • Terachi T, Fujii K, Arioka K. 2005. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 °C. J Nucl Sci Technol. 42:225–232. doi:10.1080/18811248.2005.9726383.
  • Tišáková L, Pipíška M, Godány A, Horník M, Vidová B, Augustín J. 2013. Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. J Radioanal Nucl Chem. 295:737–748. doi:10.1007/s10967-012-1932-6.
  • Turner CW, Khumsa-Ang K. 2017. Corrosion product transport and fouling in nuclear steam generators. In: Steam generators for nuclear power plants. Cambridge (UK): Woodhead Publishing. Chapter 9; p. 215–271.doi:10.1016/B978-0-08-100894-2.00011-X.
  • Van Der Mei HC, De Vries J, Busscher HJ. 2000. X-ray photoelectron spectroscopy for the study of microbial cell surfaces. Surf Sci Rep. 39:1–24. doi:10.1016/S0167-5729(00)00003-0.
  • Van Hullebusch ED, Pechaud Y. 2015. Role of natural and engineered biofilms composition in toxic inorganic contaminants immobilisation. Microbiology for minerals, metals, materials and the environment. p. 281–306. New York (NY): CRC Press. doi:10.1201/b18124-15.
  • van Hullebusch ED, Zandvoort MH, Lens PNL. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol. 2:9–33. doi:10.1023/B:RESB.0000022995.48330.55.
  • Varga K, Hirschberg G, Németh Z, Myburg G, Schunk J, Tilky P. 2001. Accumulation of radioactive corrosion products on steel surfaces of VVER-type nuclear reactors. II. 60Co. J Nucl Mater. 298:231–238. doi:10.1016/S0022-3115(01)00658-4.
  • Veyrier FJ, Cellier MF. 2014. Metal economy in host-microbe interactions. Front Cell Infect Microbiol. 4:190. doi:10.3389/fcimb.2014.00190.
  • Vieira MJ, Melo LF. 1995. Effect of clay particles on the behaviour of biofilms formed by pseudomonas fluorescens. Water Sci Technol. 32:45–52. doi:10.2166/wst.1995.0260.
  • Waldron KJ, Robinson NJ. 2009. How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol. 7:25–35. doi:10.1038/nrmicro2057.
  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R. 2007. Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. Geostand Geoanalyt Res. doi:10.1111/j.1751-908X.2007.00104.x.
  • Yin W, Wang Y, Liu L, He J. 2019. Biofilms: the microbial “protective clothing" in extreme environments. Int J Mol Sci. 20:3423.
  • Zhang TC, Bishop PL. 1994. Density, porosity, and pore structure of biofilms. Water Res. 28:2267–2277. doi:10.1016/0043-1354(94)90042-6.
  • Zhang Y, Ng CK, Cohen Y, Cao B. 2014. Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures. Mol Biosyst. 10:1035–1042. doi:10.1039/c3mb70520j.