Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 8
262
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial and antibiofilm activity of fungal metabolites on methicillin-resistant Staphylococcus aureus (ATCC 43300) mediated by SarA and AgrA

, , &
Pages 830-837 | Received 06 Jul 2023, Accepted 24 Oct 2023, Published online: 06 Nov 2023

References

  • Abdelghafar A, Yousef N, Askoura M. 2020. Combating Staphylococcus aureus biofilm with antibiofilm agents as an efficient strategy to control bacterial infection. Res J Pharm Technol. 13:5601–5606. doi: 10.5958/0974-360X.2020.00977.4.
  • Aparicio-Cuevas MA, del Carmen González M, Raja HA, Rivero-Cruz I, Kurina SJ, Burdette JE, Oberlies NH, Figueroa M. 2019. Metabolites from the marine-facultative Aspergillus sp. MEXU 27854 and Gymnoascus hyalinosporus MEXU 29901 from Caleta Bay, Mexico. Tetrahedron Lett. 60:1649–1652. doi: 10.1016/j.tetlet.2019.05.037.
  • Bai J-R, Wu Y-P, Elena G, Zhong K, Gao H. 2019. Insight into the effect of quinic acid on biofilm formed by Staphylococcus aureus. RSC Adv. 9:3938–3945. doi: 10.1039/c8ra09136f.
  • Bessa LJ, Buttachon S, Dethoup T, Martins R, Vasconcelos V, Kijjoa A, Martins da Costa P. 2016. Neofiscalin A and fiscalin C are potential novel indole alkaloid alternatives for the treatment of multidrug-resistant Gram-positive bacterial infections. FEMS Microbiol Lett. 363:fnw150. doi: 10.1093/femsle/fnw150.
  • Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA. 2012. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One. 7:e38492. doi: 10.1371/journal.pone.0038492.
  • Daly SM, Elmore BO, Kavanaugh JS, Triplett KD, Figueroa M, Raja HA, El-Elimat T, Crosby HA, Femling JK, Cech NB, et al. 2015. ω-Hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother. 59:2223–2235. doi: 10.1128/AAC.04564-14.
  • Devi R, Kaur T, Guleria G, Rana KL, Kour D, Yadav N, Yadav AN, Saxena AK. 2020. Fungal secondary metabolites and their biotechnological applications for human health. In: Gupta VG, editor. New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier; p. 147–161.
  • Díaz MA, Alberto MR, Vega-Hissi EG, González SN, Arena ME. 2022. Interference in Staphylococcus aureus biofilm and virulence factors production by human probiotic bacteria with antimutagenic activity. Arab J Sci Eng. 47:241–253. doi: 10.1007/s13369-021-05934-8.
  • Dorcheh FA, Balmeh N, Sanjari S. 2022. In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes. Inform Med Unlocked. 28:100843. doi: 10.1016/j.imu.2021.100843.
  • Dos Santos JF, Tintino SR, de Freitas TS, Campina FF, Irwin R, Siqueira-Júnior JP, Coutinho HD, Cunha FA. 2018. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis. 57:22–28. doi: 10.1016/j.cimid.2018.03.001.
  • Elkhouly HI, Sidkey NM, Ghareeb MA, El Hosainy AM, Hamed AA. 2021. Bioactive secondary metabolites from endophytic Aspergillus terreus AH1 isolated from Ipomoea carnea growing in Egypt. Egypt J Chem. 64:7611–7620. doi: 10.21608/EJCHEM.2021.85908.4161.
  • Elmaidomy AH, Shady NH, Abdeljawad KM, Elzamkan MB, Helmy HH, Tarshan EA, Adly AN, Hussien YH, Sayed NG, Zayed A, et al. 2022. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Adv. 12:29078–29102. doi: 10.1039/d2ra04884a.
  • Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH. 2014. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod. 77:1351–1358. doi: 10.1021/np5000704.
  • García-Lara B, Saucedo-Mora MÁ, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, García-Contreras R. 2015. Inhibition of quorum‐sensing‐dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol. 61:299–305. doi: 10.1111/lam.12456.
  • Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Joshi S, Ray RR. 2022. New holistic approach for the management of biofilm‐associated infections by myco‐metabolites. J Basic Microbiol. 62:1291–1306. doi: 10.1002/jobm.202200047.
  • Gilbert-Girard S, Reigada I, Savijoki K, Yli-Kauhaluoma J, Fallarero A. 2021. Screening of natural compounds identifies ferutinin as an antibacterial and anti-biofilm compound. Biofouling. 37:791–807. doi: 10.1080/08927014.2021.1971655.
  • Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. 2021. Antimicrobial resistance in biofilms: exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnol Rep. 30:e00613. doi: 10.1016/j.btre.2021.e00613.
  • Idrees M, Sawant S, Karodia N, Rahman A. 2021. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 18:7602. doi: 10.3390/ijerph18147602.
  • Kumar V, Ahluwalia V, Saran S, Kumar J, Patel AK, Singhania RR. 2021. Recent developments on solid-state fermentation for production of microbial secondary metabolites: challenges and solutions. Bioresour Technol. 323:124566. doi: 10.1016/j.biortech.2020.124566.
  • Leonard PG, Bezar IF, Sidote DJ, Stock AM. 2012. Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochemistry. 51:10035–10043. doi: 10.1021/bi3011785.
  • Mastoor S, Nazim F, Rizwan-Ul-Hasan S, Ahmed K, Khan S, Ali SN, Abidi SH. 2022. Analysis of the antimicrobial and anti-biofilm activity of natural compounds and their analogues against Staphylococcus aureus isolates. Molecules. 27:6874. doi: 10.3390/molecules27206874.
  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399:629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Oriol C, Cengher L, Manna AC, Mauro T, Pinel-Marie M-L, Felden B, Cheung A, Rouillon A. 2021. Expanding the Staphylococcus aureus sarA regulon to small RNAs. mSystems. 6:e0071321. doi: 10.1128/mSystems.00713-21.
  • Paguigan ND, Rivera-Chávez J, Stempin JJ, Augustinović M, Noras AI, Raja HA, Todd DA, Triplett KD, Day C, Figueroa M, et al. 2019. Prenylated diresorcinols inhibit bacterial quorum sensing. J Nat Prod. 82:550–558. doi: 10.1021/acs.jnatprod.8b00925.
  • Parera-Valadez Y, Yam-Puc A, López-Aguiar LK, Borges-Argáez R, Figueroa-Saldivar MA, Cáceres-Farfán M, Márquez-Velázquez NA, Prieto-Davó A. 2019. Ecological strategies behind the selection of cultivable actinomycete strains from the Yucatan Peninsula for the discovery of secondary metabolites with antibiotic activity. Microb Ecol. 77:839–851. doi: 10.1007/s00248-019-01329-3.
  • Paytubi S, de La Cruz M, Tormo JR, Martín J, González I, González-Menendez V, Genilloud O, Reyes F, Vicente F, Madrid C, et al. 2017. A high-throughput screening platform of microbial natural products for the discovery of molecules with antibiofilm properties against Salmonella. Front Microbiol. 8:326. doi: 10.3389/fmicb.2017.00326.
  • Schilcher K, Horswill AR. 2020. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 84:e00026–00019. doi: 10.1128/MMBR.00026-19.
  • Swolana D, Kępa M, Kabała-Dzik A, Dzik R, Wojtyczka RD. 2021. Sensitivity of staphylococcal biofilm to selected compounds of plant origin. Antibiotics. 10:607. doi: 10.3390/antibiotics10050607.
  • Trotonda M, Manna AC, Cheung AL, Lasa I, Penadés JR. 2005. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol. 187:5790–5798. doi: 10.1128/JB.187.16.5790-5798.2005.
  • Vijayashree Priyadharsini J. 2019. In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J Periodontol. 90:1441–1448. doi: 10.1002/JPER.18-0673.
  • World Health Organization. 2015. Antibiotic resistance: multi-country public awareness survey. Vol. 9. Geneva: WHO; p. 59.
  • Zeng Q, Zhong W-M, Chen Y-C, Xiang Y, Chen X-Y, Tian X-P, Zhang W-M, Zhang S, Wang F-Z. 2020. A new butenolide derivative from the deep-sea fungus Aspergillus terreus SCSIO FZQ028. Nat Prod Res. 34:1984–1991. doi: 10.1080/14786419.2019.1569658.
  • Zhang W-Y, Zhong Y, Yu Y, Shi D-F, Huang H-Y, Tang X-L, Wang Y-H, Chen G-D, Zhang H-P, Liu C-L, et al. 2020. 4-Hydroxy pyridones from heterologous expression and cultivation of the native host. J Nat Prod. 83:3338–3346. doi: 10.1021/acs.jnatprod.0c00675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.