Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 8
64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficacy of amorphous TiOx-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies

, , , , &
Pages 853-866 | Received 06 Mar 2023, Accepted 28 Oct 2023, Published online: 15 Nov 2023

References

  • Agostini VO, Macedo AJ, Muxagata E, Pinho GLL. 2019. Surface coatings select their micro and macrofouling communities differently on steel. Environ Pollut. 254:113086. doi: 10.1016/j.envpol.2019.113086.
  • Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 76:667–684. doi: 10.1128/MMBR.00007-12.
  • Anil AC, Chiba K, Okamoto K. 1990. Macrofouling community structure and ecology of barnacles in Hamana Bay (Japan). Biofouling. 2:137–150. doi: 10.1080/08927019009378140.
  • Antunes J, Leão P, Vasconcelos V. 2019. Marine biofilms: diversity of communities and of chemical cues. Environ Microbiol Rep. 11:287–305. doi: 10.1111/1758-2229.12694.
  • Antunes JT, Sousa AG, Azevedo J, Rego A, Leão PN, Vasconcelos V. 2020. Distinct temporal succession of bacterial communities in early marine biofilms in a Portuguese Atlantic Port. Front Microbiol. 11:1938. doi: 10.3389/fmicb.2020.01938.
  • Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia. 461:37–40. doi: 10.1023/A:1012756913566.
  • Ashelford KE, Weightman AJ, Fry JC. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30:3481–3489. doi: 10.1093/nar/gkf450.
  • Bhosle NB, Garg A, Fernandes L, Citon P. 2005. Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay. Biofouling. 21:99–107. doi: 10.1080/08927010500097821.
  • Björnsson L, Hugenholtz P, Tyson GW, Blackall LL. 2002. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology (Reading). 148:2309–2318. doi: 10.1099/00221287-148-8-2309.
  • Callow J, Callow M. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2:244. doi: 10.1038/ncomms1251.
  • Champ MA. 2003. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull. 46:935–940. doi: 10.1016/S0025-326X(03)00106-1.
  • Clare AS, Høeg JT. 2008. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling. 24:55–57. doi: 10.1080/08927010701830194.
  • Dang H, Lovell CR. 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol. 66:467–475. doi: 10.1128/AEM.66.2.467-475.2000.
  • Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 80:91–138. doi: 10.1128/MMBR.00037-15.
  • De Gregoris TB, Aldred N, Clare AS, Burgess JG. 2011. Improvement of phylum and class- specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods. 86:351–356. doi: 10.1016/j.mimet.2011.06.010.
  • De Gregoris TB, Khandeparker L, Anil AC, Mesbahi E, Burgess JG, Clare AS. 2012. Characterisation of the bacteria associated with barnacle, Balanus amphitrite, shell and their role in gregarious settlement of cypris larvae. J Exp Mar Biol Ecol. 413:7–12. doi: 10.1016/j.jembe.2011.11.014.
  • Desai DV, Prakash S. 2009. Physiological responses to hypoxia and anoxia in Balanus amphitrite (Cirripedia: thoracica). Mar Ecol Prog Ser. 390:157–166. doi: 10.3354/meps08155.
  • Dobretsov S, Dahms HU, Qian PY. 2006. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling. 22:43–54. doi: 10.1080/08927010500504784.
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci. 21:731. doi: 10.3390/ijms21030731.
  • Dobretsov S, Thomason J. 2011. The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies. Biofouling. 27:869–880. doi: 10.1080/08927014.2011.607233.
  • Du Z, Hu Z, Feng Y, Mo F. 2021. The effect of powder composition on the microstructure and corrosion resistance of laser cladding 60NiTi alloy coatings on SS 316L. Metals. 11:1104. doi: 10.3390/met11071104.
  • Eswaran R, Khandeparker L. 2014. Algal epibiosis on Megabalanus tintinnabulum and its role in segregation of the Balanus amphitrite population. Mar Ecol. 35:492–505. doi: 10.1111/maec.12105.
  • Genzer J, Efimenko K. 2006. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 22:339–360. doi: 10.1080/08927010600980223.
  • Gibbs PE, Pascoe PL, Burt GR. 1988. Sex change in the female dog-whelk Nucella lapillus, induced by tributyltin from antifouling paints. J Mar Biol Ass. 68:715–731. doi: 10.1017/S0025315400028824.
  • Gich F, Garcia-Gil J, Overmann J. 2001. Previously unknown and phylogenetically diverse members of the green non-sulfur bacteria are indigenous to freshwater lakes. Arch Microbiol. 177:1–10. doi: 10.1007/s00203-001-0354-6.
  • Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol. 66:5053–5065. doi: 10.1128/AEM.66.11.5053-5065.2000.
  • Gu JD. 2020. On environmental biotechnology of bioremediation. Appl Environ Biotechnol. 5:28–33.
  • Guillard RRL, Ryther JH. 1962. Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol. 8:229–239. doi: 10.1139/m62-029.
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 3:453–470. doi: 10.1146/annurev-marine-120709-142753.
  • Hede N, Khandeparker L. 2018. Influence of darkness and ageing on marine and freshwater biofilm microbial communities using microcosm experiments. Microb Ecol. 76:314–327. doi: 10.1007/s00248-018-1149-5.
  • Hede N, Khandeparker L. 2020. Extracellular polymeric substances mediate the coaggregation of aquatic biofilm-forming bacteria. Hydrobiologia. 847:4249–4272. doi: 10.1007/s10750-020-04411-x.
  • Hede N, Khandeparker L. 2022. Ecological impacts of aged freshwater biofilms on estuarine microbial communities elucidated through microcosm experiments: a microbial invasion perspective. Curr Microbiol. 79:210. doi: 10.1007/s00284-022-02903-8.
  • Hung OS, Thiyagarajan V, Qian PY. 2008. Preferential attachment of barnacle larvae to natural multi-species biofilms: does surface wettability matter? J Exp Mar Biol Ecol. 361:36–41. doi: 10.1016/j.jembe.2008.04.011.
  • Hunsucker KZ, Gardner H, Lieberman K, Swain G. 2019. Using hydrodynamic testing to assess the performance of fouling control coatings. Ocean Eng. 194:106677. doi: 10.1016/j.oceaneng.2019.106677.
  • Jin H, Wang J, Tian L, Gao M, Zhao J, Ren L. 2022. Recent advances in emerging integrated antifouling and anticorrosion coatings. Mater Des. 213:110307. doi: 10.1016/j.matdes.2021.110307.
  • Khandeparker L, Anil AC, Naik SD, Gaonkar CC. 2015. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment. Mar Pollut Bull. 96:337–34319. doi: 10.1016/j.marpolbul.2015.04.051.
  • Khandeparker L, Anil AC, Raghukumar S. 2002. Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite. Aquat Microb Ecol. 28:37–54. doi: 10.3354/ame028037.
  • Khandeparker L, Anil AC, Raghukumar S. 2003. Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. J Exp Mar Biol Ecol. 289:1–13. doi: 10.1016/S0022-0981(03)00024-8.
  • Khandeparker L, Anil AC, Raghukumar S. 2006. Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiol Ecol. 58:425–438. doi: 10.1111/j.1574-6941.2006.00177.x.
  • Khandeparker L, Anil AC. 2007. Underwater adhesion: the barnacle way. Int J Adhes Adhes. 27:165–172. doi: 10.1016/j.ijadhadh.2006.03.004.
  • Khandeparker L, Eswaran R, Gardade L, Kuchi N, Mapari K, Naik SD, Anil AC. 2017. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations. Environ Monit Assess. 189:41. doi: 10.1007/s10661-016-5687-3.
  • Kirchman DL. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 39:100.
  • Li C, Wang G, Chen K, Jia P, Wang L, Wang X, Yun F. 2020. Analysis of removing barnacles attached on rough substrate with cleaning robot. JMSE. 8:569. doi: 10.3390/jmse8080569.
  • Liang X, Peng LH, Zhang S, Zhou S, Yoshida A, Osatomi K, Bellou N, Guo XP, Dobretsov S, Yang JL. 2019. Polyurethane, epoxy resin and polydimethylsiloxane altered biofilm formation and mussel settlement. Chemosphere. 218:599–608. doi: 10.1016/j.chemosphere.2018.11.120.
  • Maki JS, Rittschof D, Costlow JD, Mitchell R. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol. 97:199–206. doi: 10.1007/BF00391303.
  • Marmur A. 2006. Super-hydrophobicity fundamentals: implications to biofouling prevention. Biofouling. 22:107–115. doi: 10.1080/08927010600562328.
  • Mittireddi RT, Patel NM, Gautam AR, Soppina V, Panda E. 2021. Non-stoichiometric amorphous TiOx as a highly reactive, transparent anti-viral surface coating. J Alloys Compd. 881:160610. doi: 10.1016/j.jallcom.2021.160610.
  • Nold SC, Zwart G. 1998. Patterns and governing forces in aquatic microbial communities. Aquat Ecol. 32:17–35. doi: 10.1023/A:1009991918036.
  • Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR. 2015. Biofilm formation as a response to ecological competition. PLoS Biol. 13:e1002191. doi: 10.1371/journal.pbio.1002191.
  • Otani M, Oumi T, Uwai S, Hanyuda T, Prabowo RE, Yamaguchi T, Kawai H. 2007. Occurrence and diversity of barnacles on international ships visiting Osaka Bay, Japan, and the risk of their introduction. Biofouling. 23:277–286. doi: 10.1080/08927010701315089.
  • Pereira F, Almeida JR, Paulino M, Grilo IR, Macedo H, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP. 2020. Antifouling napyradiomycins from marine-derived actinomycetes Streptomyces aculeolatus. Mar Drugs. 18:63. doi: 10.3390/md18010063.
  • Pistone A, Scolaro C, Visco A. 2021. Mechanical properties of protective coatings against marine fouling: a review. Polymers (Basel). 13:173. doi: 10.3390/polym13020173.
  • Qian PY, Thiyagarajan V, Lau SC, Cheung SC. 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat Microb Ecol. 33:225–237. doi: 10.3354/ame033225.
  • Rajitha K, Nancharaiah YV, Venugopalan VP. 2020a. Insight into bacterial biofilm-barnacle larvae interactions for environmentally benign antifouling strategies. Int Biodeterior Biodegrad. 149:104937. doi: 10.1016/j.ibiod.2020.104937.
  • Rajitha K, Nancharaiah YV, Venugopalan VP. 2020b. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae. Int Biodeterior Biodegrad. 150:104958. doi: 10.1016/j.ibiod.2020.104958.
  • Sabido EM, Tenebro CP, Suarez AFL, Ong SDC, Trono DJVL, Amago DS, Evangelista JE, Jr., Reynoso AMQ, Villalobos IGM, Alit LDD, et al. 2020. Marine sediment-derived Streptomyces strain produces angucycline antibiotics against multidrug-resistant Staphylococcus aureus harboring SCCmec type 1 gene. JMSE. 8:734. doi: 10.3390/jmse8100734.
  • Sahoo G, Khandeparker L. 2018a. Role of epibiotic diatoms isolated from the barnacle shell in the cyprid metamorphosis of Balanus amphitrite. Hydrobiologia. 822:129–142. doi: 10.1007/s10750-018-3668-y.
  • Sahoo G, Khandeparker L. 2018b. Nitric Oxide-Serotonin interplay in the cyprid metamorphosis of Balanus amphitrite (Cirripedia, Thoracica). Int Biodeter Biodegrad. 127:95–103. doi: 10.1016/j.ibiod.2017.11.018.
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi: 10.1080/08927014.2010.542809.
  • Soethe VL, Delatorre RG, Ramos EM, Parucker ML. 2017. TiO 2 thin Films for Biofouling Applications. Mat Res. 20:426–431. doi: 10.1590/1980-5373-mr-2016-1116.
  • Stalin K, Ravi L, Raghavan V. 2022. Extraction, purification and structural elucidation of environmentally benign antifouling metabolite from Streptomyces thermolineatus VITKV6A. Environ. Technol. Innov. 25:102096. doi: 10.1016/j.eti.2021.102096.
  • Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J. 2016. Experimental evolution in biofilm populations. FEMS Microbiol Rev. 40:373–397. doi: 10.1093/femsre/fuw002.
  • Szeto W, Leung MK, Leung DY. 2021. Recent developments of titanium dioxide materials for aquatic antifouling application. J Mar Sci Technol. 26:301–321. doi: 10.1007/s00773-020-00720-x.
  • Thiyagarajan V, Venugopalan VP, Subramoniam T, Nair KV. 1997. Description of the naupliar stages of Megabalanus tintinnabulum (Cirripedia: balanidae). J Crustac Biol. 17:332–342. doi: 10.2307/1549282.
  • Townsin RL. 2003. The ship hull fouling penalty. Biofouling. 19 Suppl:9–15. doi: 10.1080/0892701031000088535.
  • Unabia CR, Hadfield MG. 1999. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar Biol. 133:55–64. doi: 10.1007/s002270050442.
  • Uneputty A, Dávila-Lezama A, Garibo D, Oknianska A, Bogdanchikova N, Hernández-Sánchez JF, Susarrey-Arce A. 2022. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloids Interface Sci Commun. 46:100560. doi: 10.1016/j.colcom.2021.100560.
  • Venugopalan VP, Wagh AB. 1990. Biofouling of an offshore oil platform: faunal composition and biomass. Indian J Mar Sci. 19:53–56.
  • Wahl M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser. 58:175–189. doi: 10.3354/meps058175.
  • Wieczorek SK, Todd CD. 1998. Inhibition and facilitation of the settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling. 12:81–118. doi: 10.1080/08927019809378348.
  • Yan T, Yan WX, Dong Y, Wang HJ, Yan Y, Liang GH. 2009. Marine fouling on floating installations west of Dongsha Islands, the northern South China Sea. Int Biodeter Biodegrad. 63:1079–1087. doi: 10.1016/j.ibiod.2009.09.003.
  • Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S. 2016. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling. 32:763–777. doi: 10.1080/08927014.2016.1197210.
  • Yang YW, Chen MK, Yang BY, Huang XJ, Zhang XR, He LQ, Zhang J, Hua ZC. 2015. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces. Appl Environ Microbiol. 81:6749–6756. doi: 10.1128/AEM.01906-15.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org. Coat. 50:75–104. doi: 10.1016/j.porgcoat.2003.06.001.
  • Zhang G, Gong C, Gu J, Katayama Y, Someya T, Ji-Dong Gu JD. 2019. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int Biodeterior Biodegrad. 143:104723. doi: 10.1016/j.ibiod.2019.104723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.