Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 40, 2024 - Issue 7
106
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improvement of a low-cost protocol for a simultaneous comparative evaluation of hydrolytic activity between sessile and planktonic cells: Candida albicans as a study model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 431-445 | Received 03 Aug 2023, Accepted 26 Jun 2024, Published online: 07 Jul 2024

References

  • Akçağlar S, Ener B, Töre OKAN. 2011. Acid proteinase enzyme activity in Candida albicans strains: a comparison of spectrophotometry and plate methods. Turkish J Biol. 35:559–567. doi: 10.3906/biy-1002-39.
  • aoki s, ito-kuwa s, nakamura y, masuhara t. 1990. comparative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice. Zentralbl Bakteriol. 273:332–343. doi: 10.1016/S0934-8840(11)80437-8.
  • Archana Kumar D, Kumar M, Kumar R. 2021. Biofilm production by various Candida species isolated from various clinical specimens. Int J Heal Clin Res. 4:239–243.
  • Benahmed A, Seghir A, Boucherit-Otmani Z, Tani ZZBA-K, Aissaoui M, Kendil W, Merabet DH, Lakhal H, Boucherit K. 2023. In vitro evaluation of biofilm formation by Candida parapsilosis and Enterobacter cloacae. Scanning electron microscopy and efficacy of antimicrobial combinations study. Diagn Microbiol Infect Dis. 107:116003. doi: 10.1016/J.DIAGMICROBIO.2023.116003.
  • Benladghem Z, Seddiki SML, Dergal F, Mahdad YM, Aissaoui M, Choukchou-Braham N. 2022. Biofouling of reverse osmosis membranes: assessment by surface-enhanced Raman spectroscopy and microscopic imaging. Biofouling. 38:852–864. doi: 10.1080/08927014.2022.2139610.
  • Bernatová S, Samek O, Pilát Z, Šerý M, Ježek J, Krzyžánek V, Zemánek P, Růžička F. 2012. Raman spectroscopy for bacterial identification and characterization. 8697:237–242. doi: 10.1117/12.2010539.
  • Boucherit-Otmani Z, Brikci-Benhabib OB, Seghir A, Boucherit K. 2019. Mixed species biofilms of Candida albicans isolated from vascular catheters at the University Hospital Center of Tlemcen-Algeria. J Infect Public Health. 12:123. doi: 10.1016/j.jiph.2018.10.060.
  • Cai D, Neyer A, Kuckuk R, Heise HM. 2010. Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J Mol Struct. 976:274–281. doi: 10.1016/j.molstruc.2010.03.054.
  • Chandra J, Mukherjee PK, Ghannoum MA. 2008. In vitro growth and analysis of candida biofilms. Nat Protoc. 3:1909–1924. doi: 10.1038/nprot.2008.192.
  • Chen J, Hu N, Xu H, Liu Q, Yu X, Zhang Y, Huang Y, Tan J, Huang X, Zeng L. 2021. Molecular epidemiology, antifungal susceptibility, and virulence evaluation of Candida isolates causing invasive infection in a tertiary care teaching hospital. Front Cell Infect Microbiol. 11:721439. doi: 10.3389/FCIMB.2021.721439/FULL.
  • Colthup NB, Daly LH, Wiberley SE, Colthup NB, Daly LH, Wiberley SE. 1990. Introduction to infrared and Raman spectroscopy. Chapter 7 – olefin groups. Elsevier.
  • Copping VMS, Barelle CJ, Hube B, Gow NAR, Brown AJP, Odds FC. 2005. Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. J Antimicrob Chemother. 55:645–654. doi: 10.1093/jac/dki088.
  • Costa CR, Jesuíno RSA, de Aquino Lemos J, de Fátima Lisboa Fernandes O, e Souza LKH, Passos XS, do Rosário Rodrigues Silva M. 2010. Effects of antifungal agents in sap activity of Candida albicans isolates. Mycopathologia. 169:91–98. doi: 10.1007/S11046-009-9232-6.
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol. 49:711–745. doi: 10.1146/ANNUREV.MI.49.100195.003431.
  • Dabiri S, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. 2018. Comparative analysis of proteinase, phospholipase, hydrophobicity and biofilm forming ability in Candida species isolated from clinical specimens. J Mycol Med. 28:437–442. doi: 10.1016/J.MYCMED.2018.04.009.
  • Deepa K, Jeevitha T, Michael A. 2015. In vitro evaluation of virulence factors of Candida species isolated from oral cavity. J Microbiol Antimicrob. 7:28–32. doi: 10.5897/JMA2015.0337.
  • El-Houssaini HH, Elnabawy OM, Nasser HA, Elkhatib WF. 2019. Correlation between antifungal resistance and virulence factors in Candida albicans recovered from vaginal specimens. Microb Pathog. 128:13–19. doi: 10.1016/j.micpath.2018.12.028.
  • Erum R, Samad F, Khan A, Kazmi SU. 2020. A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC Microbiol. 20:368. doi: 10.1186/S12866-020-02045-6/FIGURES/3.
  • Ghannoum M, Parsek M, Whitely M, Mukherjee PK. 2016. Microbial biofilms, second edition. Emerg Infect Dis. 22:1142–1142. doi: 10.3201/EID2206.160282.
  • Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 13:122–143. doi: 10.1128/CMR.13.1.122-143.2000.
  • Gharaghani M, Rezaei-Matehkolaei A, Hardani AK, Zarei Mahmoudabadi A. 2021. Pediatric candiduria, epidemiology, genotype distribution and virulence factors of Candida albicans. Microb Pathog. 160:105173. doi: 10.1016/J.MICPATH.2021.105173.
  • Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18:310–321. doi: 10.1016/J.MICINF.2016.01.002.
  • Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS. 2000. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 45:r1–r59. doi: 10.1088/0031-9155/45/2/201.
  • Hattori T, Kubo A, Oguri K, Nakano H, Miyazaki HT. 2012. Femtosecond laser-excited two-photon fluorescence microscopy of surface plasmon polariton. Jpn J Appl Phys. 51:04DG03. doi: 10.1143/JJAP.51.04DG03/XML.
  • Hrubanova K, Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Samek O. 2018. Monitoring Candida parapsilosis and Staphylococcus epidermidis biofilms by a combination of scanning electron microscopy and Raman spectroscopy. Sensors. 18:4089. doi: 10.3390/s18124089.
  • Ilkhanizadeh-Qomi M, Nejatbakhsh S, Jahanshiri Z, Razzaghi-Abyaneh M. 2020. Aspartyl proteinase and phospholipase activities of Candida albicans isolated from oropharyngeal candidiasis in head and neck cancer patients. Jundishapur J Microbiol. 13:1–8. doi: 10.5812/jjm.105200.
  • Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C. 2010. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. J Biophotonics. 3:548–556. doi: 10.1002/jbio.201000025.
  • Jarvis RM, Law N, Shadi IT, O'Brien P, Lloyd JR, Goodacre R. 2008. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem. 80:6741–6746. doi: 10.1021/AC800838V.
  • Jung P, Mischo CE, Gunaratnam G, Spengler C, Becker SL, Hube B, Jacobs K, Bischoff M. 2020. Candida albicans adhesion to central venous catheters: impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence. 11:1453–1465. doi: 10.1080/21505594.2020.1836902.
  • Keleştemur S, Avci E, Çulha M. 2018. Raman and surface-enhanced Raman scattering for biofilm characterization. Chemosensors. 6:5. doi: 10.3390/chemosensors6010005.
  • Keleştemur S, Çulha M. 2017. Understanding and discrimination of biofilms of clinically relevant microorganisms using surface-enhanced Raman scattering. Appl Spectrosc. 71:1180–1188. doi: 10.1177/0003702816670916.
  • Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. 2006. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 6:2225–2231. doi: 10.1021/NL061517X/SUPPL_FILE/NL061517XSI20060630_064128.PDF.
  • Kumari P, Mishra R, Arora N, Chatrath A, Gangwar R, Roy P, Prasad R. 2017. Antifungal and anti-biofilm activity of essential oil active components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol. 8:2161. doi: 10.3389/fmicb.2017.02161.
  • Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR. 2012. Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol. 61:701–704. doi: 10.1099/jmm.0.038166-0.
  • Li X, Liu H, Lin J, Bai J, Ding J. 2001. Study of serum fluorescence and Raman spectra for diagnosis of cancer. Diagnostic Opt Spectrosc Biomed. 4432:124–130.
  • Liu CH, Alfano RR, Sha WL, Zhu HR, Zhu HR, Akins DL, Akins DL, Cleary J, Cleary J, Prudente R, et al. 1991. Human breast tissues studied by IR Fourier-transform Raman spectroscopy. Conf Lasers Electro-Optics. 4:23–28.
  • Liu X, Li T, Wang D, Yang Y, Sun W, Liu J, Sun S. 2017. Synergistic antifungal effect of fluconazole combined with licofelone against resistant Candida albicans. Front Microbiol. 8:2101. doi: 10.3389/FMICB.2017.02101/BIBTEX.
  • Maddah H, Chogle A. 2017. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Appl Water Sci. 7:2637–2651. doi: 10.1007/S13201-016-0493-1/FIGURES/10.
  • Madhavan P, Jamal F, Chong PP, Madhavan P, Jamal F, Chong PP. 2011. Laboratory isolation and identification of Candida species. J Appl Sci. 11:2870–2877. doi: 10.3923/jas.2011.2870.2877.
  • Di Martino P. 2018. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 4:274–288. doi: 10.3934/MICROBIOL.2018.2.274.
  • Mashaly GES, Zeid MS. 2022. Candida albicans genotyping and relationship of virulence factors with fluconazole tolerance in infected pediatric patients. Infect Drug Resist. 15:2035–2043. doi: 10.2147/IDR.S344998.
  • Mattei AS, Alves SH, Severo CB, Da Silva Guazzelli L, De Mattos Oliveira F, Severo LC. 2013. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop. 46:340–342. doi: 10.1590/0037-8682-0045-2013.
  • Mendes A, Mores AU, Carvalho AP, Rosa RT, Samaranayake LP, Rosa EAR. 2007. Candida albicans biofilms produce more secreted aspartyl protease than the planktonic cells. Biol Pharm Bull. 30:1813–1815. doi: 10.1248/bpb.30.1813.
  • Mohammadi F, Safasepehr H, Hashemipour S, Mirzadeh M. 2021. Evaluation of proteinase and phospholipase activity of Candida albicans strains isolated from the mouth of patients with controlled and uncontrolled diabetes mellitus in Qazvin province: short communication. J Birjand Univ Med Sci. 28:402–407. doi: 10.32592/JBirjandUnivMedSci.2021.28.4.108.
  • Nag M, Lahiri D. 2021. Analytical methodologies for biofilm research. New York (NY): Springer; p. 20–25.
  • Nailis H, Kucharíková S, Ricicová M, Van Dijck P, Deforce D, Nelis H, Coenye T. 2010. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 10:114. doi: 10.1186/1471-2180-10-114/TABLES/2.
  • Pace J, Rupp M, Finch R. 2005. Biofilms, infection, and antimicrobial therapy. New York, USA: Taylor & Francis.
  • Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev. 89:105–120. doi: 10.1016/j.addr.2015.04.006.
  • Panariello BHD, Klein MI, Dias LM, Bellini A, Costa VB, Barbugli PA, Pavarina AC. 2021. Lactobacillus casei reduces the extracellular matrix components of fluconazole-susceptible Candida albicans biofilms. Biofouling. 37:1006–1021. doi: 10.1080/08927014.2021.2001645.
  • Pannanusorn S, Tongman S, Pootong A. 2023. Biofilm, proteinase and phospholipase production by Candida albicans isolates from a hospital in Thailand. Songklanakarin J Sci Technol. 45:620–626.
  • Pichardo-Molina JL, Frausto-Reyes C, Barbosa-García O, Huerta-Franco R, González-Trujillo JL, Ramírez-Alvarado CA, Gutiérrez-Juárez G, Medina-Gutiérrez C. 2007. Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients. Lasers Med Sci. 22:229–236. doi: 10.1007/S10103-006-0432-8/METRICS.
  • Podstawka E, Ozaki Y, Proniewicz LM. 2016. Part I: surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl Spectrosc. 58:570–580. doi: 10.1366/000370204774103408.
  • Potocki L, Depciuch J, Kuna E, Worek M, Lewinska A, Wnuk M. 2019. FTIR and Raman spectroscopy-based biochemical profiling reflects genomic diversity of clinical Candida isolates that may be useful for diagnosis and targeted therapy of candidiasis. Int J Mol Sci. 20:988. doi: 10.3390/IJMS20040988.
  • Price MF, Wilkinson ID, Gentry LO. 1982. Plate method for detection of phospholipase activity in Candida albicans. Med Mycol. 20:7–14. doi: 10.1080/00362178285380031.
  • Ramage G, Rajendran R, Sherry L, Williams C. 2012. Fungal biofilm resistance. Int J Microbiol. 2012:528521–528514. doi: 10.1155/2012/528521.
  • Ramos LdS, Barbedo LS, Braga-Silva LA, Santos A d, Pinto MR, Sgarbi DBdG 2015. Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol. 32:122–125. doi: 10.1016/J.RIAM.2014.01.003.
  • Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, Kozik A. 2018. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 33:113–124. doi: 10.1111/OMI.12206.
  • Rebrošová K, Šiler M, Samek O, Růžička F, Bernatová S, Ježek J, Zemánek P, Holá V. 2019. Identification of ability to form biofilm in Candida parapsilosis and Staphylococcus epidermidis by Raman spectroscopy. Future Microbiol. 14:509–517. doi: 10.2217/fmb-2018-0297.
  • Relucenti M, Familiari G, Donfrancesco O, Taurino M, Li X, Chen R, Artini M, Papa R, Selan L. 2021. Microscopy methods for biofilm imaging: focus on SEM and VP-SEM pros and cons. Biology. 10:1–17. doi: 10.3390/biology10010051.
  • Samaranayake YH, Cheung BPK, Yau JYY, Yeung SKW, Samaranayake LP. 2013. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLOS One. 8:e62902. doi: 10.1371/JOURNAL.PONE.0062902.
  • Schaller M, Borelli C, Korting HC, Hube B. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 48:365–377. doi: 10.1111/j.1439-0507.2005.01165.x.
  • Seddiki S, Boucherit-Otmani Z, Boucherit K, Kunkel D. 2015. Infectivités fongiques des cathéters implantés dues à Candida sp. formation des biofilms et résistance. J Mycol Med. 25:130–135. doi: 10.1016/j.mycmed.2015.03.003.
  • Seddiki SML. 2021. Introduction aux biofilms microbiens [Introduction to microbial biofilms]. Paris, French: Connaissan.
  • Seddiki SML, Boucherit-Otmani Z, Bettioui AR, Boucherit K, Taleb M, Kunkel D. 2015. Nosocomial fungal infectivities: in vivo formation of Candida biofilms on catheters surfaces. Am J Microbiol Biotechnol. 2:38–43.
  • Seghir A, Boucherit-Otmani Z, Boucherit K, Sari-Belkharroubi L, Anselme-Bertrand I. 2015. Évaluation du potentiel de formation de biofilms mixtes entre Candida albicans et quelques espèces bactériennes isolées de cathéters vasculaires périphériques au CHU de Tlemcen. Première étude en Algérie. J Mycol Med. 25:123–129. doi: 10.1016/j.mycmed.2015.03.001.
  • Seman BG, Moore JL, Scherer AK, Blair BA, Manandhar S, Jones JM, Wheeler RT. 2018. Yeast and filaments have specialized, independent activities in a zebrafish model of Candida albicans infection. Infect Immun. 86:160–185. doi: 10.1128/IAI.00415-18.
  • Silva NC, Nery JM, Dias ALT. 2014. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses. 57:1–11. doi: 10.1111/MYC.12095.
  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. 2011. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 19:241–247. doi: 10.1016/J.TIM.2011.02.003.
  • Smith AL. 1960. Infrared spectra-structure correlations for organosilicon compounds. Spectrochim Acta. 16(1-2):87–105. doi: 10.1016/0371-1951(60)80074-4.
  • Su C, Yu J, Lu Y. 2018. Hyphal development in Candida albicans from different cell states. Curr Genet. 64:1239–1243. doi: 10.1007/s00294-018-0845-5.
  • Sujith A, Itoh T, Abe H, Yoshida KI, Kiran MS, Biju V, Ishikawa M. 2009. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 394:1803–1809. doi: 10.1007/S00216-009-2883-9/METRICS.
  • Taniguchi L, de Fátima Faria B, Rosa RT, de Paula e Carvalho A, Gursky LC, Elifio-Esposito SL, Parahitiyawa N, Samaranayake LP, Rosa EAR. 2009. Proposal of a low-cost protocol for colorimetric semi-quantification of secretory phospholipase by Candida albicans grown in planktonic and biofilm phases. J Microbiol Methods. 78:171–174. doi: 10.1016/j.mimet.2009.05.012.
  • Tay ST, Abidin IAZ, Hassan H, Ng KP. 2011. Proteinase, phospholipase, biofilm forming abilities and antifungal susceptibilities of Malaysian Candida isolates from blood cultures. Med Mycol. 49:556–560. doi: 10.3109/13693786.2010.551424.
  • Tefiani I, Seddiki SML, Mahdad YM, Boucherit-Otmani Z, Touil HFZ, Bessnouci C. 2020. Hydrolytic activity and biofilm formation in clinical isolates of Candida albicans: the effect of changing pH and temperature. Acta Microbiol Hell. 65:161–170.
  • Tong N, Zhu C, Zhang C, Zhang Y. 2016. Study on Raman spectra of aliphatic polyamide fibers. Optik. 127:21–24. doi: 10.1016/j.ijleo.2015.09.180.
  • Tsang CSP, Chu FCS, Leung WK, Jin LJ, Samaranayake LP, Siu SC. 2007. Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. J Med Microbiol. 56:1393–1398. doi: 10.1099/JMM.0.47303-0/CITE/REFWORKS.
  • Williams D, Lewis M. 2011. Pathogenesis and treatment of oral candidosis. J Oral Microbiol. 3:5771. doi: 10.3402/JOM.V3I0.5771.
  • Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X, Rodriguez-Zas SL, Kwast KE, Ghannoum MA, Hoyer LL. 2007. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 153:2373–2385. doi: 10.1099/mic.0.2007/006163-0.
  • Zhang R, Wu H, Su Y, Qiu L, Ni H, Xu KM, Zhao W. 2021. In-situ high-precision surface topographic and Raman mapping by divided-aperture differential confocal Raman microscopy. Appl Surf Sci. 546:149061. doi: 10.1016/j.apsusc.2021.149061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.