37
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Study of the Structural and Thermal Properties of Vitreous Silica

&
Pages 25-49 | Received 01 Apr 1999, Accepted 01 Jun 1999, Published online: 23 Sep 2006

References

  • Elliott , S. R. 1991 . Origin of the first sharp diffraction peak in the structure factor of covalent glasses . Phys. Rev. Lett. , 67 : 711 Gaskell, P. H. and Wallis, D. J. (1996). “Medium-range order in silica, the canonical network glass”, Phys. Rev. Lett., 76, 66; Fayos, R., Bermejo, F. J., Dawidowski, J., Fischer, H. E. and Gonzalez, M. A., “Direct Experimental Evidence of the Relationship between Intermediate-Range Order in Topologically Disordered Matter and Discernible Features in the Static Structure Factor”, Phys. Rev. Lett., 77, 3823 (1996)
  • Shuker , E. and Gammon , R. W. 1970 . Raman scattering selection rule breaking and the density of states in amorphous materials . Phys. Rev. Lett. , 25 : 223 Martin, A. and Brenig, W., (1974). “Model for Brillouin scattering in amorphous solids”, Phys. Status Solidi B, 64, 163; Akkermans, E. and Maynard, R. (1985). “Weak localization and anharmonicity of phonons”, Phys. Rev. B, 32, 7850; Buchenau, U., Zhou, H. M., Nücker, N., Gilroy, K. S. and Phillips, W. A. (1988). “Structural relaxation in vitreous silica”, Phys. Rev. Lett., 60, 1318; Malinovsky, V. K., Novikov, V. N., Parshin, P. P., Sokolov, A. P. and Zemlyanov, M. G. (1990). “Universal form of the low-energy (2 to 10meV) vibrational spectrum of glasses”, Europhys. Lett., 11, 43; Novikov, V. N. and Sokolov, A. P. (1991). “A correlation between low-energy vibrational spectra and first sharp diffraction peak in chalcogenide glasses”, Solid State Commun., 77, 243; Sokolov, A. P., Kisliuk, A., Soltwisch, M. and Quitmann, D. (1992). “Medium-range order in glasses: Comparison of Raman and diffraction measurements”, Phys. Rev. Lett., 69, 1540; Börjesson, F. L., Hassan, A. K., Swenson, J., Torell, L. M. and Fontana, A. (1993). “Is there a correlation between the first sharp diffraction peak and the low frequency vibrational behavior of glasses?”, Phys. Rev. Lett., 70, 1275; Gurevich, V. L., Parshin, D. A., Pelous, J. and Schober, H. R. (1993). “Theory of low-energy Raman scattering in glasses”, Phys. Rev. B, 48, 16318; Achibat, T., Boukenter, A. and Duval, E. (1993). “Correlation effects on raman scattering from low-energy vibrational modes in glasses, ii: experimental results”, J. Chem. Phys., 99, 2046; Schirmacher, W. and Wagener, M. (1993). “Vibrational anomalies and phonon localization in glasses”, Solid State Commun., 86, 597; Bermejo, F. J., Criado, A. and Martinez, J. L. (1994). “On the microscopic origin of the “boson” peak in glassy materials”, Phys. Lett. A, 195, 236; Terki, F., Levelut, C., Boissier, M. and Pelous, J., (1996) “Low-frequency dynamics and medium-range order in vitreous silica”, Phys. Rev. B, 53, 2411.
  • Jin , W. , Vashishta , P. , Kalia , R. K. and Rino , J. P. 1993 . Dynamic structure factor and vibrational properties of SiO2 glass . Phys. Rev. B , 48 : 9359 Horbach, J., Kob, W. and Binder, K., “The dynamics of supercooled silica: acoustic modes and the boson peak”, condmat/9710012
  • Taraskin , S. N. and Elliott , S. R. 1997 . Nature of vibrational excitations in vitreous silica . Phys. Rev. B , 55 : 117
  • Taraskin , S. N. and Elliott , S. R. 1997 . Phonons in vitreous silica: dispersion and localization . Europhys. Lett. , 39 : 37
  • Guillot , B. and Guissani , Y. 1997 . Boson peak and high frequency modes in amorphous silica . Phys. Rev. Lett. , 78 : 2401
  • Della Valle , R. G. and Andersen , H. C. 1992 . Molecular dynamics simulation of silica liquid and glass . J. Chem. Phys. , 97 : 2682
  • Woodcock , L. V. , Angell , C. A. and Cheeseman , P. 1976 . Molecular dynamics studies of the vitreous state: simple ionic systems and silica . J. Chem. Phys. , 65 : 1565 Holender, J. M. and Morgan, G. J. (1991). “Molecular dynamics simulations of a large structure of amorphous Si and direct calculations of the structure factor”, J. Phys.: CM, 3, 1947; Servalli, G. and Colombo, L. (1993). “Simulation of the amorphous-silicon properties and their dependence on sample preparation”, Europhys. Lett., 22, 107; Nakano, A., Bi, L., Kalia, R. K. and Vashishta, P. (1993). “Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer”, Phys. Rev. Lett., 71, 85; Sarnthein, J., Pasquarello, A. and Car, R. (1995). “Structural and electronic properties of liquid and amorphous SiO2: an ab initio molecular dynamics study”, Phys. Rev. Lett., 74, 4682
  • Vollmayr , K. , Kob , W. and Binder , K. 1996 . Cooling-rate effects in amorphous silica: a computer-simulation study . Phys. Rev. B , 54 : 15808
  • van Beest , B. W. H. , Kramer , G. J. and van Santen , R. A. 1990 . Force fields for silicas and aluminophosphates based on ab initio calculations . Phys. Rev. Lett. , 64 : 1955
  • Rustad , J. R. , Yuen , D. A. and Spera , F. J. 1991 . Molecular dynamics of amorphous silica at very high pressures (135gpa): thermodynamics and extraction of structures through analysis of voronoi polyhedra . Phys. Rev. B , 44 : 2108
  • Sadoc , J. F. and Mosseri , R. 1997 . “ La frustration Géométrique ” . In Alea Collection , Edited by: Eyrolles . France : Saclay .
  • Allen , M. P. and Tildesley , D. J. 1990 . Computer simulation of liquids , New-York : Oxford University Press .
  • Jund , P. , Caprion , D. and Jullien , R. 1997 . Local investigation of the glass transition: molecular dynamics and voronoi tessellation . Europhys. Lett. , 37 : 547 Jund, P., Caprion, D. and Jullien, R. (1997). “The glass transition in a simple model glass: numerical simulations”, Mol. Sim., 20, 3
  • Gellatly , B. J. and Finney , J. L. 1982 . Characterisation of models of multicomponent amorphous metals: the radical alternatice to the Voronoi polyhedron . J. Non Cryst. Solids , 50 : 313
  • Stillinger , F. H. and Weber , T. A. 1982 . Hidden structure in liquids . Phys. Rev. A , 25 : 978
  • Neuefeind , J. and Liss , K.-D. 1996 . Bond angle distribution in amorphous germania and silica . Ber. Buns. Ges. Phys. Chem. , 100 : 1341
  • Jullien , R. , Jund , P. , Caprion , D. and Quitmann , D. 1996 . Computer investigation of long-range correlations and local order in random packings of spheres . Phys. Rev. E , 54 : 6035
  • Bruckner , R. 1970 . Properties and structure of vitreous silica . J. Non. Cryst. Solids , 5 : 123 Zeller, R. C. and Pohl, R. O. (1971). “Thermal conductivity and specific heat of noncrystalline solids”, Phys. Rev. B, 4, 2029; Cahill, D. G. and Pohl, R. O. (1987). “Thermal conductivity of amorphous solids above the plateau”, Phys. Rev. B, 35, 4067
  • Anderson , P. W. , Halperin , B. I. and Varma , C. M. 1972 . Anomalous low-temperature thermal properties of glasses and spin glasses . Phil. Mag. , 25 : 1 Phillips, W. A. (1972). “Tunneling states and the low-temperature thermal expansion of glasses”, J. Low Temp. Phys., 7, 351.
  • Graebner , J. E. , Golding , B. and Allen , L. C. 1986 . Phonon localization in glasses . Phys. Rev. B , 34 : 5696 Yu, C. C. and Freeman, J. J. (1987). Phys. Rev. B, “Thermal conductivity and specific heat of glasses”, 36, 7620; Alexander, S., Entin-Wohlman, O. and Orbach, R. (1986). “Phonon-fracton anharmonic interactions: The thermal conductivity of amorphous materials”, Phys. Rev. B, 34, 2726
  • Karpov , V. G. , Klinger , M. I. and Ignat'ev , F. N. 1983 . Theory of the low-temperature anomalies in the thermal properties of amorphous structures . Sov. Phys. JETP , 57 : 439 Ill'in, M. A., Karpov, V. G. and Parshin, D. A. (1987). “Parameters of soft atomic potentials in glasses”, Sov. Phys. JETP, 65, 165
  • Gil , L. , Ramos , M. A. , Bringer , A. and Buchenau , U. 1993 . Low-temperature specific heat and thermal conductivity of glasses . Phys. Rev. Lett. , 70 : 182
  • Tenenbaum , A. , Ciccotti , G. and Gallico , R. 1982 . Stationary nonequilibrium states by molecular dynamics. Fourier's law . Phys. Rev. A , 25 : 2778 Mountain, R. D. and MacDonald, R. A. (1983). “Thermal conductivity of crystals: a molecular-dynamics study of heat flow in a two dimensional crystal”, Phys. Rev. B, 28, 3022
  • Maeda , A. and Munakata , T. 1995 . Lattice thermal conductivity via homogeneous nonequilibrium molecular dynamics . Phys. Rev. E , 52 : 234
  • Michalski , J. 1992 . Thermal conductivity of amorphous solids above the plateau: molecular-dynamics study . Phys. Rev. B , 45 : 7054
  • Oligschleger , C. and Schön , J. C. 1999 . Simulation of thermal conductivity and heat transport in solids . Phys. Rev. B , 59 : 4125
  • Ladd , A. J. C. , Moran , B. and Hoover , W. G. 1986 . Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics . Phys. Rev. B , 34 : 5058
  • Allen , P. B. and Feldman , J. L. 1993 . Thermal conductivity of disordered harmonic solids . Phys. Rev. B , 48 : 12581 Feldman, J. L., Kluge, M. D., Allen, P. B. and Wooten, F. (1993). “Thermal conductivity and localization in glasses: numerical study of a model of amorphous silicon”, Phys. Rev. B, 48, 12589
  • Kaburati , H. and Machida , M. 1993 . Thermal conductivity in one-dimensional lattices of Fermi-Pasta-Ulam type . Phys. Lett. A , 181 ( 2 ) : 85
  • Reif , F. 1965 . Fundamentals of statistical and thermal physics , McGraw-Hill .
  • Stephens , R. B. 1973 . Low-temperature specific heat and thermal conductivity of noncrystalline dielectric solids . Phys. Rev. B , 8 : 2896
  • Zarzycki , J. 1982 . Les verres et l'état vitreux , Paris : Masson . and references therein
  • Terki , F. , Levelut , C. , Boissier , M. and Pelous , J. 1996 . Low-frequency dynamics and medium-range order in vitreous silica . Phys. Rev. B , 53 : 2411
  • Winterling , G. 1975 . Very low frequency Raman scattering in vitreous silica . Phys. Rev. B , 12 : 2432 Galeener, F. L., Leadbetter, A. J. and Stringfellow, M. W. (1983). “Comparison of the neutron, Raman and infrared vibrational spectra of vitreous SiO2, GeO2 and BeF2”, Phys. Rev. B, 27, 1052
  • We do find (like other authors [3]) an excess of modes at low frequencies compared with the Debye formula when diagonalizing the dynamical matrix. However the maximum of this excess of modes is located at a frequency of about 2THz, i.e., almost twice the experimental value. We think that this discrepancy is simply due to finite size effects: by reducing the lowest frequency ω 0 one would shift this maximum excess of modes to lower frequencies
  • Kittel , C. 1970 . Introduction à la Physique de l'état solide , Paris : Dunod .
  • Jund , P. and Jullien , R. 1999 . Molecular Dynamics calculation of the thermal conductivity of vitreous silica . Phys. Rev. B , 59 : 13707

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.