162
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Slip boundary conditions in nanofluidics from the molecular theory of solvation

&
Pages 733-737 | Received 21 Sep 2010, Accepted 02 Nov 2010, Published online: 04 Jul 2011

References

  • Squires , T.M. and Quake , S.R. 2005 . Microfluidics: Fluid physics at the nanoliter scale . Rev. Mod. Phys. , 77 : 977 – 1026 .
  • R.B. , Schoch , Han , J. and Renaud , P. 2008 . Transport phenomena in nanofluidics . Rev. Mod. Phys. , 80 : 839 – 883 .
  • J. Berthier, Microdrops and Digital Microfluidics, In series: Micro & Nano Technologies, J. Ramsden (Series Ed.), William-Andrew, Norwich, 2008.
  • Abgrall , P. and Nguyen , N.-T. 2009 . Nanofluidics , Boston, MA : Artech House .
  • Li , P.C.H. 2010 . Fundamentals of Microfluidics and Lab on a Chip for Biological Analysis and Discovery , Boca Raton, FL : CRC Press .
  • Gad-el-Hak , M. , ed. 2002 . The MEMS Handbook , Boca Raton, FL : CRC Press .
  • H.J. De Los Santos, Principles and Applications of NanoMEMS Physics, In series: Microsystems, Vol. 15, Springer, Dordrecht, 2005.
  • G.A. Urban, BioMEMS, In series: Microsystems, Vol. 16, Springer, Dordrecht, 2005.
  • Osiander , R. , Darrin , M.A.G. and Champion , J.L. , eds. 2006 . MEMS and Microstructures in Aerospace Applications , Boca Raton, FL : Taylor & Francis .
  • Park , J.K. and Kricka , L.J. 2007 . Prospects for nano- and microtechnologies in clinical point-of-care testing . Lab Chip , 7 : 547 – 549 .
  • Eijkel , J.C.T. and van den Berg , A. 2007 . Energy conversion in microsystems: Is there a role for micro/nanofluidics? . Lab Chip , 7 : 1234 – 1237 .
  • Berejnov , V. , Djilali , N. and Sinton , D. 2008 . Lab-on-chip methodologies for the study of transport in porous media: Energy applications . Lab Chip , 8 : 689 – 693 .
  • Bruus , H. 2008 . Theoretical Microfluidics , Oxford : Oxford University Press .
  • Pamme , N. 2007 . Continuous flow separation in microfluidic devices . Lab Chip , 7 : 1644 – 1659 .
  • Pennathur , S. 2008 . Flow control in microfluidics: Are the workhorse flows adequate? . Lab Chip , 8 : 383 – 387 .
  • Kim , D. , Raj , A. , Zhu , L. , Masel , R.I. and Shannon , M.A. 2008 . Non-equilibrium electrokinetic micro/nanofluidic mixer . Lab Chip , 8 : 625 – 628 .
  • Eijkel , J.C.T. 2007 . Liquid slip in micro- and nanofluidics: Recent research and its possible implications . Lab Chip , 7 : 299 – 301 .
  • Kobryn , A.E. and Kovalenko , A. 2008 . Molecular theory of hydrodynamic boundary conditions in nanofluidics . J. Chem. Phys. , 129 : 134701
  • Kobryn , A.E. , Ichiki , K. and Kovalenko , A. 2009 . Thermodynamic dependences of slip length for nanofluidic flows over crystalline surfaces: Predictions of molecular theory of solvation . Int. J. Quant. Chem. , 109 : 1666 – 1671 .
  • Kovalenko , A. 2003 . “ Three-dimensional RISM theory for molecular liquids and solid–liquid interfaces ” . In Molecular Theory of Solvation , Edited by: Hirata , F. 169 – 275 . Dordrecht : Kluwer .
  • Perkyns , J. and Pettitt , M.B. 1992 . A dielectrically consistent interaction site theory for solvent–electrolyte mixtures . Chem. Phys. Lett. , 190 : 626 – 630 .
  • Perkyns , J. and Pettitt , M.B. 1992 . A site–site theory for finite concentration saline solutions . J. Chem. Phys. , 97 : 7656 – 7666 .
  • Munakata , T. , Yoshida , S. and Hirata , F. 1996 . Statistical mechanics of deformable molecular liquids: Thermal expansion and isomerization of diatomic molecules . Phys. Rev. E , 54 : 3687 – 3692 .
  • Yamaguchi , T. , Chong , S.-H. and Hirata , F. 2003 . Theoretical study of the molecular motion of liquid water under high pressure . J. Chem. Phys. , 119 : 1021 – 1034 .
  • Yamaguchi , T. , Nagao , A. , Matsuoka , T. and Koda , S. 2003 . A theoretical study on the anomalous pressure dependence of the transport properties of ionic liquids: Comparison among lithium bromide, silica, and water . J. Chem. Phys. , 119 : 11306 – 11317 .
  • Kobryn , A.E. , Yamaguchi , T. and Hirata , F. 2005 . Site–site memory equation approach in study of density/pressure dependence of translational diffusion coefficient and rotational relaxation time of polar molecular solutions: Acetonitrile in water, methanol in water, and methanol in acetonitrile . J. Chem. Phys. , 122 : 184511
  • Kobryn , A.E. , Yamaguchi , T. and Hirata , F. 2005 . Pressure dependence of diffusion coefficient and orientational relaxation time for acetonitrile and methanol in water: DRISM/mode-coupling study . J. Mol. Liq. , 119 : 7 – 13 .
  • Kobryn , A.E. , Yamaguchi , T. and Hirata , F. 2006 . Study of anomalous mobility of polar molecular solutions by means of the site–site memory equation formalism . J. Mol. Liq. , 125 : 14 – 21 .
  • Kobryn , A.E. and Hirata , F. 2007 . Statistical–mechanical theory of ultrasonic absorption in molecular liquids . J. Chem. Phys. , 126 : 44504
  • Ulmanella , U. and Ho , C.-M. 2008 . Molecular effects on boundary condition in micro/nanoliquid flows . Phys. Fluids , 20 : 101512
  • Honig , C.D.F. and Ducker , W.A. 2007 . Thin film lubrication for large colloidal particles: Experimental tests of the no-slip boundary condition . J. Phys. Chem. C , 111 : 16300 – 16312 .
  • Churaev , N.V. , Sobolev , V.D. and Somov , A.N. 1984 . Slippage of liquids over solid surfaces . J. Colloid Interface Sci. , 97 : 574 – 581 .
  • Tretheway , D.C. and Meinhart , C.D. 2002 . Apparent fluid slip at hydrophobic microchannel walls . Phys. Fluids , 14 : L9 – L12 .
  • Cheng , J.-T. and Giordano , N. 2002 . Fluid flow through nanometer-scale channels . Phys. Rev. E , 65 : 031206
  • Zhu , Y. and Granick , S. 2001 . Rate-dependent slip of Newtonian liquid at smooth surfaces . Phys. Rev. Lett. , 87 : 096105
  • Cottin-Bizonne , C. , Jurine , S. , Baudry , J. , Crassous , J. , Restagno , F. and Charlaix , É. 2002 . Nanorheology: An investigation of the boundary condition at hydrophobic and hydrophilic interfaces . Eur. Phys. J. E , 9 : 47 – 53 .
  • Watanabe , K. , Yanuar , U. and Udagawa , H. 1999 . Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall . J. Fluid Mech. , 381 : 225 – 238 .
  • Lauga , E. and Stone , H.A. 2003 . Effective slip in pressure-driven Stokes flow . J. Fluid Mech. , 489 : 55 – 77 .
  • Tuteja , A. , Mackay , M.E. , Narayanan , S. , Asokan , S. and Wong , M.S. 2007 . Breakdown of the continuum Stokes–Einstein relation for nanoparticle diffusion . Nano Lett. , 7 : 1276 – 1281 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.