354
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Density functional theory calculations of redox properties of iron–sulphur protein analogues

&
Pages 572-590 | Received 30 Mar 2011, Accepted 05 Apr 2011, Published online: 08 Jun 2011

References

  • Gray , H.B. and Winkler , J.R. 1996 . Electron transfer in proteins . Annu. Rev. Biochem. , 65 : 537 – 561 .
  • Ichiye , T. 1999 . “ Computational studies of redox potentials of electron transfer proteins ” . In Simulation and Theory of Electrostatic Interactions in Solution , Edited by: Pratt , L.R. and Hummer , G. 431 – 450 . Santa Fe, NM : AIP .
  • Ichiye , T. 2001 . “ Simulations of electron transfer proteins ” . In Computational Biochemistry and Biophysics , Edited by: Becker , O.M. , MacKerell , A.D. , Roux , Jr, B. and Watanabe , M. 393 – 415 . New York, NY : Marcel Dekker, Inc .
  • Beinert , H. , Holm , R.H. and Münck , E. 1997 . Iron–sulfur clusters: Nature's modular, multipurpose structures . Science , 277 : 263 – 659 .
  • Beinert , H. 2000 . Iron–sulfur proteins: Ancient structure, still full of surprises . J. Biol. Inorg. Chem. , 5 : 2 – 15 .
  • Rao , P.V. and Holm , R.H. 2004 . Synthetic analogues of the active sites of iron–sulfur proteins . Chem. Rev. , 104 : 527 – 559 .
  • Marcus , R.A. and Sutin , N. 1985 . Electron transfer in chemistry and biology . Biochim. Biophys. Acta. , 811 : 265 – 322 .
  • Reiss , H. and Heller , A. 1985 . The absolute potential of the standard hydrogen electrode: A new estimate . J. Phys. Chem. , 89 : 4207 – 4213 .
  • Bair , R.A. and Goddard , W.A. 1977 . Theoretical studies of oxidized and reduced states of a model for active-site of rubredoxin . J. Am. Chem. Soc. , 99 : 3505 – 3507 .
  • Bair , R.A. and Goddard , W.A. 1978 . theoretical studies of ground and excited-states of a model of active-site in oxidized and reduced rubredoxin . J. Am. Chem. Soc. , 100 : 5669 – 5676 .
  • Mouesca , J.M. , Chen , J.L. , Noodleman , L. , Bashford , D. and Case , D.A. 1994 . Density-functional Poisson–Boltzmann calculations of redox potentials for iron–sulfur clusters . J. Am. Chem. Soc. , 116 : 11898 – 11914 .
  • Koerner , J.B. and Ichiye , T. 1997 . Conformational dependence of the electronic properties of [Fe(SCH3)4]1 − ,2 −  . J. Phys. Chem. B , 101 : 3633 – 3643 .
  • Koerner , J.B. and Ichiye , T. 2000 . Interactions of the rubredoxin redox site analog [Fe(SCH3)4]2 −  with water: An ab initio quantum chemistry study . J. Phys. Chem. B , 104 : 2424 – 2431 .
  • Sigfridsson , E. , Olsson , M.H.M. and Ryde , U. 2001 . Inner-sphere reorganization energy of iron–sulfur clusters studied with theoretical methods . Inorg. Chem. , 40 : 2509 – 2519 .
  • Stephens , P.J. , Jollie , D.R. and Warshel , A. 1996 . Protein control of redox potentials of iron–sulfur proteins . Chem. Rev. , 96 : 2491 – 2513 .
  • Gunner , M.R. , Nicholls , A. and Honig , B. 1996 . Electrostatic potentials in Rhodopseudomonas viridis reaction centers: Implications for the driving force and directionality of electron transfer . J. Phys. Chem. , 100 : 4277 – 4291 .
  • Swartz , P.D. , Beck , B.W. and Ichiye , T. 1996 . Structural origins of redox potentials in iron–sulfur proteins: Electrostatic potentials of crystal structures . Biophys. J. , 71 : 2958 – 2969 .
  • Beck , B.W. , Xie , Q. and Ichiye , T. 2001 . Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide dipoles in [4Fe–4S] ferredoxins . Biophys. J. , 81 : 601 – 603 .
  • Warshel , A. and Levitt , M. 1976 . Theoretical studies of enzymic reactions – dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme . J. Mol. Biol. , 103 : 227 – 249 .
  • Gao , J.L. and Thompson , M.A. , eds. 1998 . Combined Quantum Mechanical and Molecular Mechanical Methods , Vol. 712 , Washington, DC : American Chemical Society .
  • Gao , J.L. and Truhlar , D.G. 2002 . Quantum mechanical methods for enzyme kinetics . Annu. Rev. Phys. Chem. , 53 : 467 – 505 .
  • Iftimie , R. , Minary , P. and Tuckerman , M.E. 2005 . Ab initio molecular dynamics: Concepts, recent developments, and future trends . Proc. Natl Acad. Sci. USA , 102 : 6654 – 6659 .
  • Sundararajan , M. , Hillier , I.H. and Burton , N.A. 2006 . Structure and redox properties of the protein, rubredoxin, and its ligand and metal mutants studied by electronic structure calculation . J. Phys. Chem. A , 110 : 785 – 790 .
  • Sulpizi , M. , Raugei , S. , VandeVondele , J. , Carloni , P. and Sprik , M. 2007 . Calculation of redox properties: Understanding short- and long-range effects in rubredoxin . J. Phys. Chem. B , 111 : 3969 – 3976 .
  • Parr , R.G. and Yang , W. 1989 . Density-functional Theory of Atoms and Molecules , Oxford : Oxford University Press .
  • Gilson , M.K. , Sharp , K.A. and Honig , B.H. 1988 . Calculating the electrostatic potential of molecules in solution – method and error assessment . J. Comput. Chem. , 9 : 327 – 335 .
  • Honig , B. and Nicholls , A. 1995 . Classical electrostatics in biology and chemistry . Science , 268 : 1144 – 1149 .
  • Torres , R.A. , Lovell , T. , Noodleman , L. and Case , D.A. 2003 . Density functional and reduction potential calculations of Fe4S4 clusters . J. Am. Chem. Soc. , 125 : 1923 – 1936 .
  • Perrin , B.S. and Ichiye , T. 2010 . Fold versus sequence effects on the driving force for protein-mediated electron transfer . Proteins Struct. Funct. Bioinf. , 78 : 2798 – 2808 .
  • Lewars , E. 2003 . Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics , Boston, MA : Kluwer Academic .
  • Niu , S.Q. and Hall , M.B. 2000 . Theoretical studies on reactions of transition-metal complexes . Chem. Rev. , 100 : 353 – 405 .
  • Cohen , A.J. , Mori-Sanchez , P. and Yang , W.T. 2008 . Insights into current limitations of density functional theory . Science , 321 : 792 – 794 .
  • Zhao , Y. and Truhlar , D.G. 2008 . Density functionals with broad applicability in chemistry . Acc. Chem. Res. , 41 : 157 – 167 .
  • Niu , S.Q. , Wang , X.B. , Nichols , J.A. , Wang , L.S. and Ichiye , T. 2003 . Combined quantum chemistry and photoelectron spectroscopy study of the electronic structure and reduction potentials of rubredoxin redox site analogues . J. Phys. Chem. A , 107 : 2898 – 2907 .
  • Niu , S.Q. , Nichols , J.A. and Ichiye , T. 2009 . Optimization of spin-unrestricted density functional theory for redox properties of rubredoxin redox site analogues . J. Chem. Theory Comput. , 5 : 1361 – 1368 .
  • Wang , X.B. , Niu , S.Q. , Yang , X. , Ibrahim , S.K. , Pickett , C.J. , Ichiye , T. and Wang , L.S. 2003 . Probing the intrinsic electronic structure of the cubane [4Fe–4S] cluster: Nature's favorite cluster for electron transfer and storage . J. Am. Chem. Soc. , 125 : 14072 – 14081 .
  • Yang , X. , Wang , X.B. , Niu , S.Q. , Pickett , C.J. , Ichiye , T. and Wang , L.S. 2002 . Coulomb- and antiferromagnetic-induced fission in doubly charged cubelike Fe–S clusters . Phys. Rev. Lett. , 89 : 163401 – 163401 .
  • Yang , X. , Niu , S.Q. , Ichiye , T. and Wang , L.S. 2004 . Direct measurement of the hydrogen-bonding effect on the intrinsic redox potentials of [4Fe–4S] cubane complexes . J. Am. Chem. Soc. , 126 : 15790 – 15794 .
  • Fu , Y.J. , Niu , S.Q. , Ichiye , T. and Wang , L.S. 2005 . Electronic structure and intrinsic redox properties of [2Fe–2S]+ clusters with tri- and tetracoordinate iron sites . Inorg. Chem. , 44 : 1202 – 1204 .
  • Wang , X.B. and Wang , L.S. 2000 . Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions . J. Chem. Phys. , 112 : 6959 – 6962 .
  • Yang , X. , Wang , X.B. , Fu , Y.J. and Wang , L.S. 2003 . On the electronic structure of [1Fe] Fe–S complexes from anionic photoelectron spectroscopy . J. Phys. Chem. A , 107 : 1703 – 1709 .
  • Fu , Y.J. , Yang , X. , Wang , X.B. and Wang , L.S. 2004 . Terminal ligand influence on the electronic structure and intrinsic redox properties of the [Fe4S4]2+ cubane clusters . Inorg. Chem. , 43 : 3647 – 3655 .
  • Zhai , H.J. , Yang , X. , Fu , Y.J. , Wang , X.B. and Wang , L.S. 2004 . Sequential oxidation of the cubane [4Fe–4S] cluster from [4Fe–4S]−  to [4Fe–4S]3+ in Fe4S4Ln −  complexes . J. Am. Chem. Soc. , 126 : 8413 – 8420 .
  • Niu , S.Q. and Ichiye , T. 2009 . Probing ligand effects on the redox energies of [4Fe–4S] clusters using broken-symmetry density functional theory . J. Phys. Chem. A , 113 : 5671 – 5676 .
  • Solomon , E.I. , Hedman , B. , Hodgson , K.O. , Dey , A. and Szilagyi , R.K. 2005 . Ligand K-edge X-ray absorption spectroscopy: covalency of ligand-metal bonds . Coord. Chem. Rev. , 249 : 97 – 129 .
  • Niu , S.Q. , Wang , X.B. , Yang , X. , Wang , L.S. and Ichiye , T. 2004 . Mechanistic insight into the symmetric fission of [4Fe–4S] analogue complexes and implications for cluster conversions in iron–sulfur proteins . J. Phys. Chem. A , 108 : 6750 – 6757 .
  • Niu , S.Q. and Ichiye , T. 2007 . Probing the structural effects on the intrinsic electronic and redox properties of [2Fe–2S]+ clusters, a broken-symmetry density functional theory study . Theor. Chem. Acc. , 117 : 275 – 281 .
  • Niu , S.Q. and Ichiye , T. 2009 . Cleavage of [4Fe–4S]-type clusters: Breaking the symmetry . J. Phys. Chem. A , 113 : 5710 – 5717 .
  • Niu , S.Q. and Ichiye , T. 2009 . Insight into environmental effects on bonding and redox properties of [4Fe–4S] clusters in proteins . J. Am. Chem. Soc. , 131 : 5724 – 5725 .
  • Cramer , C.J. 2004 . Essentials of Computational Chemistry: Theories and Models , 2nd ed. , New York : Wiley .
  • Davidson , E.R. and Jarzecki , A.A. 1998 . Zero point corrections to vertical excitation energies . Chem. Phys. Lett. , 285 : 155 – 159 .
  • Y. Luo, S.Q. Niu, and T. Ichiye, Density Functional Theory Study of Rubredoxin Redox Site Analogues, Unpublished work.
  • Mulliken , R.S. 1955 . Electronic population analysis on LCAO MO molecular wave functions. I . J. Chem. Phys. , 23 : 1833 – 1840 .
  • Reed , A.E. , Curtiss , L.A. and Weinhold , F. 1988 . Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint . Chem. Rev. , 88 : 899 – 926 .
  • Solomon , E.I. , Szilagyi , R.K. , George , S.D. and Basumallick , L. 2004 . Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins . Chem. Rev. , 104 : 419 – 458 .
  • Mouesca , J.-M. , Noodleman , L. , Case , D.A. and Lamotte , B. 1995 . Spin densities and spin coupling in iron–sulfur clusters . Inorg. Chem. , 34 : 4347
  • Noodleman , L. and Case , D.A. 1992 . “ Density-functional theory of spin polarization and spin coupling in iron–sulfur clusters ” . In Advances in Inorganic Chemistry , Edited by: Cammack , R. 423 – 470 . San Diego, CA : Academic Press .
  • Noodleman , L. , Peng , C.Y. , Case , D.A. and Mouesca , J.M. 1995 . Orbital interactions, electron delocalization and spin coupling in iron–sulfur clusters . Coord. Chem. Rev. , 144 : 199 – 244 .
  • Shoji , M. , Koizumi , K. , Kitagawa , Y. , Yamanaka , S. , Kawakami , T. , Okumura , M. and Yamaguchi , K. 2005 . Theory of chemical bonds in metalloenzymes II: Hybrid-DFT studies in iron–sulfur clusters . Int. J. Quantum Chem. , 105 : 628 – 644 .
  • Shoji , M. , Koizumi , K. , Taniguchi , T. , Kitagawa , Y. , Yamanaka , S. , Okumura , M. and Yamaguchi , K. 2007 . Theory of chemical bonds in metalloenzymes III: Full geometry optimization and vibration analysis of ferredoxin-type [2Fe–2S] cluster . Int. J. Quantum Chem. , 107 : 116 – 133 .
  • Shadle , S.E. , Hedman , B. , Hodgson , K.O. and Solomon , E.I. 1995 . Ligand K-edge X-ray-absorption spectroscopic studies – metal-ligand covalency in a series of transition-metal tetrachlorides . J. Am. Chem. Soc. , 117 : 2259 – 2272 .
  • Mouesca , J.M. and Lamotte , B. 1998 . Iron–sulfur clusters and their electronic and magnetic properties . Coord. Chem. Rev. , 178 : 1573 – 1614 .
  • Cohen , A.J. and Handy , N.C. 2000 . Assessment of exchange correlation functionals . Chem. Phys. Lett. , 316 : 160 – 166 .
  • Becke , A.D. 1993 . Density-functional thermochemistry. 3. The role of exact exchange . J. Chem. Phys. , 98 : 5648 – 5652 .
  • Becke , A.D. 1988 . Density-functional exchange–energy approximation with correct asymptotic behavior . Phys. Rev. , A38 : 3098 – 3100 .
  • Lee , C. , Yang , W. and Parr , R.G. 1988 . Development of the Colle-Salvetti correlation–energy formula into a functional of the electron density . Phys. Rev. , B37 : 785 – 789 .
  • Becke , A.D. 1993 . A new mixing of Hartree–Fock and local density-functional theories . J. Chem. Phys. , 98 : 1372 – 1377 .
  • Perdew , J.P. and Wang , Y. 1992 . Accurate and simple analytic representation of the electron–gas correlation–energy . Phys. Rev. B , 45 : 13244 – 13249 .
  • Becke , A.D. 1997 . Density-functional thermochemistry. 5. Systematic optimization of exchange-correlation functionals . J. Chem. Phys. , 107 : 8554 – 8560 .
  • Stevens , W.J. , Basch , H. and Krauss , M. 1984 . Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms . J. Chem. Phys. , 81 : 6026 – 6033 .
  • Hay , P.J. and Wadt , W.R. 1985 . Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals . J. Chem. Phys. , 82 : 299 – 310 .
  • Hay , P.J. and Wadt , W.R. 1985 . Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg . J. Chem. Phys. , 82 : 284
  • Couty , M. and Hall , M.B. 1996 . Basis sets for transition metals: Optimized outer p functions . J. Comput. Chem. , 17 : 1359 – 1370 .
  • Hehre , W.J. , Radom , L. , Schleyer , P.v.R. and Pople , J.A. 1986 . Ab initio molecular orbital theory , New York : Wiley .
  • Hariharan , P.C. and Pople , J.A. 1973 . The influence of polarization functions on molecular orbital hydrogenation energies . Theor. Chim. Acta , 28 : 213 – 222 .
  • Francl , M.M. , Petro , W.J. , Hehre , W.J. , Binkley , J.S. , Gordon , M.S. , DeFrees , D.J. and Pople , J.A. 1982 . Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements . J. Chem. Phys. , 77 : 3654 – 3665 .
  • Rassolov , V. , Pople , J.A. , Ratner , M. and Windus , T.L. 1998 . 6-31G* basis set for atoms K through Zn . J. Chem. Phys. , 109 : 1223 – 1229 .
  • Godbout , N. , Salahub , D.R. , Andzelm , J. and Wimmer , E. 1992 . Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation . Can. J. Chem. , 70 : 560 – 571 .
  • Lane , R.W. , Ibers , J.A. , Frankel , R.B. , Papaefthymiou , G.C. and Holm , R.H. 1977 . Synthetic analogues of the active sites of iron–sulfur proteins. 14. Synthesis, properties, and structures of bis(o-xylyl-α,α′-dithiolato) ferrate (II,III) anions, analogues of oxidized and reduced rubredoxin sites . J. Am. Chem. Soc. , 99 : 84 – 98 .
  • Maelia , L.E. , Millar , M. and Koch , S.A. 1992 . General-synthesis of iron(III) tetrathiolate complexes – structural and spectroscopic models for the [Ge(Cys–S)4] center in oxidized rubredoxin . Inorg. Chem. , 31 : 4594 – 4600 .
  • Sellmann , D. , Geck , M. , Knoch , F. , Ritter , G. and Dengler , J. 1991 . Transition-metal complexes with sulfur ligands. 57. Stabilization of high-valent Fe(IV) centers and vacant coordination sites by sulfur π-donation – syntheses, X-ray structures, and properties of [Fe(S2)2(PMe3)N] (N = 1, 2) and (NMe4)[Fe(S2)2(PMe3)2].CH3OH (  = 1,2-benzenedithiolate2 − ) . J. Am. Chem. Soc. , 113 : 3819 – 3828 .
  • Macdonnell , F.M. , Ruhlandtsenge , K. , Ellison , J.J. , Holm , R.H. and Power , P.P. 1995 . Sterically encumbered iron(II) thiolate complexes – synthesis and structure of trigonal planar [Fe(SR)3]−  (R = 2,4,6-t-Bu3C6H2) and Mossbauer-Spectra of 2-coordinate and 3-coordinate complexes . Inorg. Chem. , 34 : 1815 – 1822 .
  • Clark , T. , Spitznagel , G.W. , Chandrasekhar , J. and Schleyer , P.v.R. 1983 . Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F . J. Comp. Chem. , 4 : 294 – 301 .
  • Norman , J.G. and Jackels , S.C. 1975 . Theoretical models for oxidized rubredoxin – SCF-Xα-SW calculations on FeS4 5 − , Fe(SH)4 − , and Fe(SCH3)4- . J. Am. Chem. Soc. , 97 : 3833 – 3835 .
  • Butcher , K.D. , Didziulis , S.V. , Briat , B. and Solomon , E.I. 1990 . Variable photon energy photoelectron-spectroscopy on Fecl4−  – an unusual electronic-structure for high-spin D5 complexes . J. Am. Chem. Soc. , 112 : 2231 – 2242 .
  • Belinskii , M. 1993 . Heisenberg-model for tetrameric iron clusters in high-potential iron–sulfur proteins. 1. Exchange states, G-factors, hyperfine interactions . Chem. Phys. , 176 : 15 – 36 .
  • Belinskii , M. 1993 . Heisenberg-model for tetrameric iron clusters in high-potential iron–sulfur proteins. 2. Double exchange in distorted cluster . Chem. Phys. , 176 : 37 – 45 .
  • Rius , G. and Lamotte , B. 1989 . Single-crystal endor study of a Fe57-enriched iron sulfur [Fe4S4]3+ cluster . J. Am. Chem. Soc. , 111 : 2464 – 2469 .
  • Lepape , L. , Lamotte , B. , Mouesca , J.M. and Rius , G. 1997 . Paramagnetic states of four iron four sulfur clusters. 2. Proton ENDOR study of a 1+ state in an asymmetrical cluster . J. Am. Chem. Soc. , 119 : 9771 – 9781 .
  • Girerd , J.J. 1983 . Electron-transfer between magnetic ions in mixed-valence binuclear systems . J. Chem. Phys. , 79 : 1766 – 1775 .
  • Borshch , S.A. , Bominaar , E.L. , Blondin , G. and Girerd , J.J. 1993 . Double exchange and vibronic coupling in mixed-valence systems – origin of the broken-symmetry ground-state of [Fe3S4]0 cores in proteins and models . J. Am. Chem. Soc. , 115 : 5155 – 5168 .
  • Dey , A. , Roche , C.L. , Walters , M.A. , Hodgson , K.O. , Hedman , B. and Solomon , E.I. 2005 . Sulfur K-edge XAS and DFT calculations on [Fe4S4]2+ clusters: Effects of H-bonding and structural distortion on covalency and spin topology . Inorg. Chem. , 44 : 8349 – 8354 .
  • Szilagyi , R.K. and Winslow , M.A. 2006 . On the accuracy of density functional theory for iron–sulfur clusters . J. Comput. Chem. , 27 : 1385 – 1397 .
  • Yang , X. , Wang , X.B. , Wang , L.S. , Niu , S.Q. and Ichiye , T. 2003 . On the electronic structures of gaseous transition metal halide complexes, FeX4 - and MX3 - (M = Mn, Fe, Co, Ni, X = Cl, Br), using photoelectron spectroscopy and density functional calculations . J. Chem. Phys. , 119 : 8311 – 8320 .
  • Reiher , M. , Salomon , O. and Hess , B.A. 2001 . Reparameterization of hybrid functionals based on energy differences of states of different multiplicity . Theor. Chem. Acc. , 107 : 48 – 55 .
  • Li , J. 2000 . Calculation of iron–sulfur clusters in FeS protein active sites by broken symmetry density functional method . Acta Chim. Sin. , 58 : 1529 – 1533 .
  • Breneman , C.M. and Wiberg , K.B. 1990 . Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis . J. Comput. Chem. , 11 : 361 – 373 .
  • MacKerell , A.D. Jr , Bashford , D. , Bellot , M. , Dunbrack , R.L. Jr , Field , M.J. , Fischer , S. , Gao , J. , Guo , H. , Ha , S. , Joseph , D. , Kuchnir , K. , Kuczera , K. , Lau , F.T.K. , Mattos , M. , Michnick , S. , Nguyen , D.T. , Ngo , T. , Prodhom , B. , Roux , B. , Schlenkrich , M. , Smith , J. , Stote , R. , Straub , J. , Wiorkiewicz-Kuczera , J. and Karplus , M. 1998 . All-atom empirical potential for molecular modeling and dynamics studies of proteins . J. Phys. Chem. B , 102 : 3586 – 3616 .
  • Warshel , A. and Parson , W.W. 1991 . Computer simulations of electron-transfer reactions in solution and in photosynthetic reaction centers . Annu. Rev. Phys. Chem. , 42 : 279 – 309 .
  • Miller , B.T. , Singh , R.P. , Klauda , J.B. , Hodoscek , M. , Brooks , B.R. and Woodcock , H.L. 2008 . CHARMMing: A new, flexible web portal for CHARMM . J. Chem. Inf. Model. , 48 : 1920 – 1929 .
  • Brooks , B.R. , Bruccoleri , R.E. , Olafson , B.D. , States , D.J. , Swaminathan , S. and Karplus , M. 1983 . CHARMM: A program for macromolecular energy, minimization, and dynamics calculations . J. Comput. Chem. , 4 : 187 – 217 .
  • Luo , Y. , Ergenekan , C.E. , Fischer , J.T. , Tan , M.L. and Ichiye , T. 2010 . The molecular determinants of the increased reduction potential of the rubredoxin domain of rubrerythrin relative to rubredoxin . Biophys. J. , 98 : 560 – 568 .
  • Yelle , R.B. , Park , N.S. and Ichiye , T. 1995 . Molecular-dynamics simulations of rubredoxin from Clostridium pasteurianum – changes in structure and electrostatic potential during redox reactions . Proteins Struct. Funct. Genet. , 22 : 154 – 167 .
  • Swartz , P.D. and Ichiye , T. 1996 . Temperature dependence of the redox potential of rubredoxin from Pyrococcus furiosus: A molecular dynamics study . Biochem. , 35 : 13772 – 13779 .
  • Min , T. , Ergenekan , C.E. , Eidsness , M.K. , Ichiye , T. and Kang , C. 2001 . Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin . Protein Sci. , 1 : 463 – 676 .
  • Niu , S.Q. , Ichiye , T. , Fu , Y.J. , Yang , X. and Wang , L.S. 2005 . Electronic and electrostatic effects on the electronic structure and intrinsic reduction potential of the [4Fe–4S] cluster in ferredoxin and HiPIP . Abstr. Pap. Am. Chem. Soc. , 230 : U2156 – U2157 .
  • Link , T.A. 1999 . “ The structures of Rieske and Rieske-type proteins ” . In Iron–sulfur proteins , Edited by: Sykes , A.G. and Cammack , R. 83 – 157 . San Diego, CA : Academic Press, Inc. .
  • Glaser , T. , Bertini , I. , Moura , J.J.G. , Hedman , B. , Hodgson , K.O. and Solomon , E.I. 2001 . Protein effects on the electronic structure of the [Fe4S4]2+ cluster in ferredoxin and HiPIP . J. Am. Chem. Soc. , 123 : 4859 – 4860 .
  • Dey , A. , Francis , E.J. , Adams , M.W.W. , Babini , E. , Takahashi , Y. , Fukuyama , K. , Hodgson , K.O. , Hedman , B. and Solomon , E.I. 2007 . Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin . Science , 318 : 1464 – 1468 .
  • Gray , H.B. , Malmstrom , B.G. and Williams , R.J.P. 2000 . Copper coordination in blue proteins . J. Biol. Inorg. Chem. , 5 : 551 – 559 .
  • Machczynski , M.C. , Gray , H.B. and Richards , J.H. 2002 . An outer-sphere hydrogen-bond network constrains copper coordination in blue proteins . J. Inorg. Biochem. , 88 : 375 – 380 .
  • Cammack , R. 1992 . Iron–sulfur cluster in enzymes: Themes and variations . Adv. Inorg. Chem. , 38 : 281 – 322 .
  • Adman , E.T. , Watenpaugh , K.D. and Jensen , L.H. 1975 . NH–S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin and Chromatium high potential iron protein . Proc. Natl Acad. Sci. USA , 72 : 4854 – 4858 .
  • Backes , G. , Mino , Y. , Loehr , T.M. , Meyer , T.E. , Cusanovich , M.A. , Sweeny , W.V. , Adman , E.T. and Sanders-Loehr , J. 1991 . The environment of Fe4S4 clusters in ferredoxins and high-potential iron proteins. New information from X-ray crystallography and resonance Raman spectroscopy . J. Am. Chem. Soc. , 113 : 2055 – 2064 .
  • Johnson , D.C. , Dean , D.R. , Smith , A.D. and Johnson , M.K. 2005 . Structure, function, and formation of biological iron–sulfur clusters . Annu. Rev. Biochem. , 74 : 247 – 281 .
  • Fu , Y.J. , Laskin , J. and Wang , L.S. 2006 . Collision-induced dissociation of [4Fe–4S] cubane cluster complexes: [Fe4S4Cl4-x(SC2H5)x]2 − /1 −  (x = 0–4) . Int. J. Mass. Spectrom. , 255 : 102 – 110 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.