534
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Molecular modelling of cation–π interactions

&
Pages 704-722 | Received 06 Mar 2012, Accepted 23 Apr 2012, Published online: 04 Jul 2012

References

  • Stauffer , D.A. , Barrans , R.E. and Dougherty , D.A. 1990 . Concerning the thermodynamics of molecular recognition in aqueous and organic media. Evidence for significant heat capacity effects . J. Org. Chem. , 55 : 2762 – 2767 .
  • Dougherty , D.A. 1996 . Cation–π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp . Science , 271 : 163 – 168 .
  • Gallivan , J.P. and Dougherty , D.A. 1999 . Cation–π interactions in structural biology . Proc. Natl. Acad. Sci. , 96 : 9459 – 9464 .
  • Ma , J.C. and Dougherty , D.A. 1997 . The cation–π interaction . Chem. Rev. , 97 : 1303 – 1324 .
  • Zacharias , N. and Dougherty , D.A. 2002 . Cation–π interactions in ligand recognition and catalysis . Trends Pharmacol. Sci. , 23 : 281 – 287 .
  • Meyer , E.A. , Castellano , R.K. and Diederich , F. 2003 . Interactions with aromatic rings in chemical and biological recognition . Angew. Chem. Int. Ed. , 42 : 1210 – 1250 .
  • Kim , K.S. , Tarakeshwar , P. and Lee , J.Y. 2000 . Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies . Chem. Rev. , 100 : 4145 – 4185 .
  • Frontera , A. , Quiñonero , D. and Deyà , P.M. 2011 . Cation–π and anion–π interactions . Wiley Interdiscip. Rev. Comput. Mol. Sci. , 1 : 440 – 459 .
  • Feller , D. , Dixon , D.A. and Nicholas , J.B. 2000 . Binding enthalpies for alkali cation–benzene complexes revisited . J. Phys. Chem. A , 104 : 11414 – 11419 .
  • Zhu , W.-L. , Tan , X.-J. , Puah , C.M. , Gu , J.-D. , Jiang , H.-L. , Chen , K. , Felder , C.E. , Silman , I. and Sussman , J.L. 2000 . How does ammonium interact with aromatic groups? A density functional theory (DFT/B3LYP) investigation . J. Phys. Chem. A , 104 : 9573 – 9580 .
  • Kim , D. , Hu , S. , Tarakeshwar , P. , Kim , K.S. and Lisy , J.M. 2003 . Cation–π interactions: A theoretical investigation of the interaction of metallic and organic cations with alkenes, arenes, and heteroarenes . J. Phys. Chem. A , 107 : 1228 – 1238 .
  • Reddy , A.S. and Sastry , G.N. 2005 . Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4 +, and NMe4 +] interactions with the aromatic motifs of naturally occurring amino acids: A theoretical study . J. Phys. Chem. A , 109 : 8893 – 8903 .
  • Marshall , M.S. , Steele , R.P. , Thanthiriwatte , K.S. and Sherrill , C.D. 2009 . Potential energy curves for cation–π interactions: Off-axis configurations are also attractive . J. Phys. Chem. A , 113 : 13628 – 13632 .
  • Pullman , A. 2001 . Components of the interaction energy of benzene with Na+ and methylammonium cations . J. Mol. Struct. THEOCHEM , 537 : 163 – 172 .
  • Mavri , J. , Koller , J. and Hadži , D. 1993 . Ab initio and AM1 calculations on model systems of acetylcholine binding: Complexes of tetramethylammonium with aromatics, neutral and ionic formic acid . J. Mol. Struct. THEOCHEM , 283 : 305 – 312 .
  • Kim , K.S. , Lee , J.Y. , Lee , S.J. , Ha , T.-K. and Kim , D.H. 1994 . On binding forces between aromatic ring and quaternary ammonium compound . J. Am. Chem. Soc. , 116 : 7399 – 7400 .
  • Pullman , A. , Berthier , G. and Savinelli , R. 1997 . Theoretical study of binding of tetramethylammonium ion with aromatics . J. Comput. Chem. , 18 : 2012 – 2022 .
  • Felder , C.E. , Jiang , H.-L. , Zhu , W.-L. , Chen , K. , Silman , I. , Botti , S.A. and Sussman , J.L. 2001 . Quantum/classical mechanical comparison of cation–π interactions between tetramethylammonium and benzene . J. Phys. Chem. A , 105 : 1326 – 1333 .
  • Mecozzi , S. 1996 . Cation–π interactions in aromatics of biological and medicinal interest: Electrostatic potential surfaces as a useful qualitative guide . Proc. Natl. Acad. Sci. , 93 : 10566 – 10571 .
  • Mecozzi , S. , West , A.P. and Dougherty , D.A. 1996 . Cation–π interactions in simple aromatics: Electrostatics provide a predictive tool . J. Am. Chem. Soc. , 118 : 2307 – 2308 .
  • Wheeler , S.E. and Houk , K.N. 2009 . Substituent effects in cation/π interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents . J. Am. Chem. Soc. , 131 : 3126 – 3127 .
  • Wheeler , S.E. and Houk , K.N. 2009 . Through-space effects of substituents dominate molecular electrostatic potentials of substituted arenes . J. Chem. Theory Comput. , 5 : 2301 – 2312 .
  • Sayyed , F.B. and Suresh , C.H. 2011 . Quantitative assessment of substituent effects on cation–π interactions using molecular electrostatic potential topography . J. Phys. Chem. A , 115 : 9300 – 9307 .
  • Raju , R.K. , Bloom , J.W.G. , An , Y. and Wheeler , S.E. 2011 . Substituent effects on non-covalent interactions with aromatic rings: Insights from computational chemistry . ChemPhysChem , 12 : 3116 – 3130 .
  • Gal , J.-F. , Maria , P.-C. , Decouzon , M. , Mó , O. , Yáñez , M. and Abboud , J.L.M. 2003 . Lithium–cation/π complexes of aromatic systems. The effect of increasing the number of fused rings . J. Am. Chem. Soc. , 125 : 10394 – 10401 .
  • Mishra , B.K. , Bajpai , V.K. , Ramanathan , V. , Gadre , S. and Sathyamurthy , N. 2008 . Cation–π interaction: To stack or to spread . Mol. Phys. , 106 : 1557 – 1566 .
  • Sunner , J. , Nishizawa , K. and Kebarle , P. 1981 . Ion–solvent molecule interactions in the gas phase. The potassium ion and benzene . J. Phys. Chem. , 85 : 1814 – 1820 .
  • Tateno , M. and Hagiwara , Y. 2009 . Evaluation of stabilization energies in π–π and cation–π interactions involved in biological macromolecules by ab initio calculations . J. Phys. Condens. Matter , 21 : 7 pp 064243
  • Feller , D. , Glendening , E.D. , Woon , D.E. and Feyereisen , M.W. 1995 . An extended basis set ab initio study of alkali metal cation–water clusters . J. Chem. Phys. , 103 : 3526 – 3542 .
  • Orabi , E.A. and Lamoureux , G. 2012 . Cation–π and π–π interactions in aqueous solution studied using polarizable potential models . J. Chem. Theory Comput. , 8 : 182 – 193 .
  • Liu , T. , Zhu , W. , Gu , J. , Shen , J. , Luo , X. , Chen , G. , Puah , C.M. , Silman , I. , Chen , K. , Sussman , J.L. and Jiang , H. 2004 . Additivity of cation–π interactions: An ab initio computational study on π–cation–π sandwich complexes . J. Phys. Chem. A , 108 : 9400 – 9405 .
  • Cheng , J. , Gong , Z. , Zhu , W. , Tang , Y. , Li , W. , Li , Z. and Jiang , H. 2007 . Cation sitting in aromatic cages: Ab initio computational studies on tetramethylammonium–(benzene)n (n = 3–4) complexes . J. Phys. Org. Chem. , 20 : 448 – 453 .
  • Frontera , A. , Quiñonero , D. , Garau , C. , Costa , A. , Ballester , P. and Deyà , P.M. 2006 . MP2 study of cation–(π)n–π interactions (n = 1–4) . J. Phys. Chem. A , 110 : 9307 – 9309 .
  • Frontera , A. , Quiñonero , D. , Costa , A. , Ballester , P. and Deyà , P.M. 2007 . MP2 study of cooperative effects between cation–π, anion–π and π–π interactions . New J. Chem. , 31 : 556 – 560 .
  • Vijay , D. and Sastry , G.N. 2010 . The cooperativity of cation–π and π–π interactions . Chem. Phys. Lett. , 485 : 235 – 242 .
  • Reddy , A.S. , Zipse , H. and Sastry , G.N. 2007 . Cation–π interactions of bare and coordinatively saturated metal ions: Contrasting structural and energetic characteristics . J. Phys. Chem. B , 111 : 11546 – 11553 .
  • Rao , J.S. , Zipse , H. and Sastry , G.N. 2009 . Explicit solvent effect on cation–π interactions: A first principle investigation . J. Phys. Chem. B , 113 : 7225 – 7236 .
  • Zarić , S.D. 1999 . Cation–π interaction with transition-metal complex as cation . Chem. Phys. Lett. , 311 : 77 – 80 .
  • Zarić , S.D. 2000 . Theoretical study of cation–π interactions of the metal complex cation, [Co(NH3)6]3+, with ethylene and acetylene . Chem. Phys. , 256 : 213 – 223 .
  • Zarić , S.D. , Popović , D.M. and Knapp , E.W. 2000 . Metal ligand aromatic cation–π interactions in metalloproteins: Ligands coordinated to metal interact with aromatic residues . Chem. Eur. J. , 6 : 3935 – 3942 .
  • Ben-Naim , A. and Marcus , Y. 1984 . Solvation thermodynamics of nonionic solutes . J. Chem. Phys. , 81 : 2016 – 2027 .
  • Gallivan , J.P. and Dougherty , D.A. 2000 . A computational study of cation–π interactions vs salt bridges in aqueous media: Implications for protein engineering . J. Am. Chem. Soc. , 122 : 870 – 874 .
  • Li , J. , Hawkins , G.D. , Cramer , C.J. and Truhlar , D.G. 1998 . Universal reaction field model based on ab initio Hartree–Fock theory . Chem. Phys. Lett. , 288 : 293 – 298 .
  • Mavri , J. and Hadži , D. 2001 . Modelling of ligand–receptor interactions: Ab-initio and DFT calculations of solvent reaction field effects on methylated ammonium–π and –acetate complexes . J. Mol. Struct. THEOCHEM , 540 : 251 – 255 .
  • Biot , C. , Buisine , E. and Rooman , M. 2003 . Free-energy calculations of protein–ligand cation–π and amino–π interactions: From vacuum to proteinlike environments . J. Am. Chem. Soc. , 125 : 13988 – 13994 .
  • Cramer , C.J. and Truhlar , D.G. 1999 . Implicit solvation models: Equilibria, structure, spectra, and dynamics . Chem. Rev. , 99 : 2161 – 2200 .
  • Tomasi , J. , Mennucci , B. and Cammi , R. 2005 . Quantum mechanical continuum solvation models . Chem. Rev. , 105 : 2999 – 3093 .
  • Cossi , M. , Barone , V. , Mennucci , B. and Tomasi , J. 1998 . Ab initio study of ionic solutions by a polarizable continuum dielectric model . Chem. Phys. Lett. , 286 : 253 – 260 .
  • Choi , H.S. , Suh , S.B. , Cho , S.J. and Kim , K.S. 1998 . Ionophores and receptors using cation–π interactions: Collarenes . Proc. Natl. Acad. Sci. , 95 : 12094 – 12099 .
  • Jorgensen , W.L. and Tirado-Rives , J. 1988 . The OPLS optimized potentials for liquid simulations potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin . J. Am. Chem. Soc. , 110 : 1657 – 1666 .
  • Jorgensen , W.L. , Maxwell , D.S. and Tirado-Rives , J. 1996 . Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids . J. Am. Chem. Soc. , 118 : 11225 – 11236 .
  • Chen , B. and Siepmann , J.I. 1999 . Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of normal alkanes . J. Phys. Chem. B , 103 : 5370 – 5379 .
  • Rai , N. and Siepmann , J.I. 2007 . Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds . J. Phys. Chem. B , 111 : 10790 – 10799 .
  • Cornell , W.D. , Cieplak , P. , Bayly , C.I. , Gould , I.R. , Merz , K.M. , Ferguson , D.M. , Spellmeyer , D.C. , Fox , T. , Caldwell , J.W. and Kollman , P.A. 1995 . A second generation force field for the simulation of proteins, nucleic acids, and organic molecules . J. Am. Chem. Soc. , 117 : 5179 – 5197 .
  • MacKerell , A.D. Jr , Bashford , D. , Dunbrack , R.L. , Evanseck , J.D. , Field , M.J. , Fischer , S. , Gao , J. , Guo , H. , Ha , S. , Joseph-McCarthy , D. , Kuchnir , L. , Kuczera , K. , Lau , F.T.K. , Mattos , C. , Michnick , S. , Ngo , T. , Nguyen , D.T. , Prodhom , B. , Reiher , W.E. III , Roux , B. , Schlenkrich , M. , Smith , J.C. , Stote , R. , Straub , J. , Watanabe , M. , Wiórkiewicz-Kuczera , J. , Yin , D. and Karplus , M. 1998 . All-atom empirical potential for molecular modeling and dynamics studies of proteins . J. Phys. Chem. B , 102 : 3586 – 3616 .
  • Ponder , J.W. and Case , D.A. 2003 . Force fields for protein simulations . Adv. Protein Chem. , 66 : 27 – 85 .
  • Albertí , M. , Aguilar , A. , Lucas , J.M. , Pirani , F. , Cappelletti , D. , Coletti , C. and Re , N. 2006 . Atom-bond pairwise additive representation for cation–benzene potential energy surfaces: An ab initio validation study . J. Phys. Chem. A , 110 : 9002 – 9010 .
  • Albertí , M. , Castro , A. , Laganà , A. , Moix , M. , Pirani , F. , Cappelletti , D. and Liuti , G. 2005 . A molecular dynamics investigation of rare-gas solvated cation–benzene clusters using a new model potential . J. Phys. Chem. A , 109 : 2906 – 2911 .
  • Albertí , M. , Aguilar , A. , Lucas , J.M. , Cappelletti , D. , Laganà , A. and Pirani , F. 2006 . Dynamics of Rb+–benzene and Rb+–benzene–Arn (n ≤ 3) clusters . Chem. Phys. , 328 : 221 – 228 .
  • Albertí , M. , Aguilar , A. , Lucas , J.M. , Laganà , A. and Pirani , F. 2007 . From Ar clustering dynamics to Ar solvation for Na+–benzene . J. Phys. Chem. A , 111 : 1780 – 1787 .
  • Huarte-Larrañaga , F. , Aguilar , A. , Lucas , J.M. and Albertí , M. 2007 . Size-specific interaction of alkali metal ions in the solvation of M+–benzene clusters by Ar atoms . J. Phys. Chem. A , 111 : 8072 – 8079 .
  • Albertí , M. , Pacifici , L. , Laganà , A. and Aguilar , A. 2006 . A molecular dynamics study for the isomerization of Ar solvated (benzene)2–K+ heteroclusters . Chem. Phys. , 327 : 105 – 111 .
  • Kumpf , R.A. and Dougherty , D.A. 1993 . A mechanism for ion selectivity in potassium channels: Computational studies of cation–π interactions . Science , 261 : 1708 – 1710 .
  • Jorgensen , W.L. and Severance , D.L. 1990 . Aromatic–aromatic interactions: Free energy profiles for the benzene dimer in water, chloroform, and liquid benzene . J. Am. Chem. Soc. , 112 : 4768 – 4774 .
  • Åqvist , J. 1990 . Ion–water interaction potentials derived from free energy perturbation simulations . J. Phys. Chem. , 94 : 8021 – 8024 .
  • Caldwell , J.W. and Kollman , P.A. 1995 . Cation–π interactions: Nonadditive effects are critical in their accurate representation . J. Am. Chem. Soc. , 117 : 4177 – 4178 .
  • Doyle , D.A. , Morais Cabral , J. , Pfuetzner , R.A. , Kuo , A. , Gulbis , J.M. , Cohen , S.L. , Chait , B.T. and MacKinnon , R. 1998 . The structure of the potassium channel: Molecular basis of K+ conduction and selectivity . Science , 280 : 69 – 77 .
  • Chipot , C. , Maigret , B. , Pearlman , D.A. and Kollman , P.A. 1996 . Molecular dynamics potential of mean force calculations: A study of the toluene–ammonium π–cation interactions . J. Am. Chem. Soc. , 118 : 2998 – 3005 .
  • Duffy , E.M. , Kowalczyk , P.J. and Jorgensen , W.L. 1993 . Do denaturants interact with aromatic hydrocarbons in water? . J. Am. Chem. Soc. , 115 : 9271 – 9275 .
  • Cubero , E. , Luque , F.J. and Orozco , M. 1998 . Is polarization important in cation–π interactions? . Proc. Natl. Acad. Sci. , 95 : 5976 – 5980 .
  • Soteras , I. , Orozco , M. and Luque , F.J. 2008 . Induction effects in metal cation–benzene complexes . Phys. Chem. Chem. Phys. , 10 : 2616 – 2624 .
  • Ponomarev , S.Y. , Click , T.H. and Kaminski , G.A. 2011 . Electrostatic polarization is crucial in reproducing Cu(I) interaction energies and hydration . J. Phys. Chem. B , 115 : 10079 – 10085 .
  • Minoux , H. and Chipot , C. 1999 . Cation–π interactions in proteins: Can simple models provide an accurate description? . J. Am. Chem. Soc. , 121 : 10366 – 10372 .
  • Dehez , F. , Ángyán , J.G. , Gutiérrez , I.S. , Luque , F.J. , Schulten , K. and Chipot , C. 2007 . Modeling induction phenomena in intermolecular interactions with an ab initio force field . J. Chem. Theory Comput. , 3 : 1914 – 1926 .
  • Archambault , F. , Chipot , C. , Soteras , I. , Luque , F.J. , Schulten , K. and Dehez , F. 2009 . Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions . J. Chem. Theory Comput. , 5 : 3022 – 3031 .
  • Lopes , P.E.M. , Roux , B. and MacKerell , A.D. Jr . 2009 . Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability. Theory and applications . Theor. Chem. Acc. , 124 : 11 – 28 .
  • Cieplak , P. , Dupradeau , F.-Y. , Duan , Y. and Wang , J. 2009 . Polarization effects in molecular mechanical force fields . J. Phys. Condens. Matter , 21 : 21 pp 333102
  • Cieplak , P. , Caldwell , J. and Kollman , P. 2001 . Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: Aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform . J. Comput. Chem. , 22 : 1048 – 1057 .
  • Wang , Z.-X. , Zhang , W. , Wu , C. , Lei , H. , Cieplak , P. and Duan , Y. 2006 . Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides . J. Comput. Chem. , 27 : 781 – 790 .
  • Kaminski , G.A. , Stern , H.A. , Berne , B.J. , Friesner , R.A. , Cao , Y.X. , Murphy , R.B. , Zhou , R. and Halgren , T.A. 2002 . Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests . J. Comput. Chem. , 23 : 1515 – 1531 .
  • Kaminski , G.A. , Stern , H.A. , Berne , B.J. and Friesner , R.A. 2004 . Development of an accurate and robust polarizable molecular mechanics force field from ab initio quantum chemistry . J. Phys. Chem. A , 108 : 621 – 627 .
  • Friesner , R.A. 2005 . Modeling polarization in proteins and protein–ligand complexes: Methods and preliminary results . Adv. Protein Chem. , 72 : 79 – 104 .
  • Patel , S. and Brooks , C.L. III . 2004 . CHARMM fluctuating charge force field for proteins: I. Parameterization and application to bulk organic liquid simulations . J. Comput. Chem. , 25 : 1 – 15 .
  • Patel , S. , MacKerell , A.D. Jr and Brooks , C.L. III . 2004 . CHARMM fluctuating charge force field for proteins: II. Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model . J. Comput. Chem. , 25 : 1504 – 1514 .
  • Patel , S. and Brooks , C.L. III . 2006 . Fluctuating charge force fields: Recent developments and applications from small molecules to macromolecular biological systems . Mol. Simulation , 32 : 231 – 249 .
  • Lamoureux , G. , Harder , E. , Vorobyov , I. , Roux , B. and MacKerell , A.D. Jr . 2006 . A polarizable model of water for molecular dynamics simulations of biomolecules . Chem. Phys. Lett. , 418 : 245 – 249 .
  • Xie , W. , Pu , J. , MacKerell , A.D. Jr and Gao , J. 2007 . Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes . J. Chem. Theory Comput. , 3 : 1878 – 1889 .
  • Ponder , J.W. , Wu , C. , Ren , P. , Pande , V.S. , Chodera , J.D. , Schnieders , M.J. , Haque , I. , Mobley , D.L. , Lambrecht , D.S. , DiStasio , R.A. , Head-Gordon , M. , Clark , G.N.I. , Johnson , M.E. and Head-Gordon , T. 2010 . Current status of the AMOEBA polarizable force field . J. Phys. Chem. B , 114 : 2549 – 2564 .
  • Hättig , C. , Jansen , G. , Hess , B.A. and Ángyán , J.G. 1996 . Topologically partitioned dynamic polarizabilities using the theory of atoms in molecules . Can. J. Chem. , 74 : 976 – 987 .
  • Yu , H. , Whitfield , T. , Harder , E. , Lamoureux , G. , Vorobyov , I. , Anisimov , V.M. , MacKerell , A.D. Jr and Roux , B. 2010 . Simulating monovalent and divalent ions in aqueous solution using a Drude polarizable force field . J. Chem. Theory Comput. , 6 : 774 – 786 .
  • Lopes , P.E.M. , Lamoureux , G. , Roux , B. and MacKerell , A.D. Jr . 2007 . Polarizable empirical force field for aromatic compounds based on the classical Drude oscillator . J. Phys. Chem. B , 111 : 2873 – 2885 .
  • Lopes , P.E.M. , Lamoureux , G. and MacKerell , A.D. Jr . 2009 . Polarizable empirical force field for nitrogen-containing heteroaromatic compounds based on the classical Drude oscillator . J. Comput. Chem. , 30 : 1821 – 1838 .
  • Harder , E. , Anisimov , V.M. , Vorobyov , I. , Lopes , P.E.M. , Noskov , S.Y. , MacKerell , A.D. Jr and Roux , B. 2006 . Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator . J. Chem. Theory Comput. , 2 : 1587 – 1597 .
  • Lamoureux , G. and Roux , B. 2003 . Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm . J. Chem. Phys. , 119 : 3025 – 3039 .
  • Jiang , W. , Hardy , D.J. , Phillips , J.C. , Mackerell , A.D. Jr , Schulten , K. and Roux , B. 2011 . High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD . J. Phys. Chem. Lett. , 2 : 87 – 92 .
  • Noskov , S.Y. , Lamoureux , G. and Roux , B. 2005 . Molecular dynamics study of hydration in ethanol–water mixtures using a polarizable force field . J. Phys. Chem. B , 109 : 6705 – 6713 .
  • Wang , S. , Orabi , E.A. , Baday , S. , Bernèche , S. and Lamoureux , G. 2012 . Ammonium transporters achieve charge transfer by fragmenting their substrate . J. Am. Chem. Soc. , In press (DOI: 10.1021/ja300129x)
  • Tuckerman , M.E. 2002 . Ab initio molecular dynamics: Basic concepts, current trends and novel applications . J. Phys. Condens. Matter , 14 : R1297 – R1355 .
  • Carloni , P. , Rothlisberger , U. and Parrinello , M. 2002 . The role and perspective of ab initio molecular dynamics in the study of biological systems . Acc. Chem. Res. , 35 : 455 – 464 .
  • Tongraar , A. , Liedl , K.R. and Rode , B.M. 1998 . Born–Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects . J. Phys. Chem. A , 102 : 10340 – 10347 .
  • Gao , J. , Chou , L.W. and Auerbach , A. 1993 . The nature of cation–π binding: Interactions between tetramethylammonium ion and benzene in aqueous solution . Biophys. J. , 65 : 43 – 47 .
  • Dewar , M.J.S. , Zoebisch , E.G. , Healy , E.F. and Stewart , J.J.P. 1985 . AM1: A new general purpose quantum mechanical molecular model . J. Am. Chem. Soc. , 107 : 3902 – 3909 .
  • Jorgensen , W.L. , Chandrasekhar , J. , Madura , J.D. , Impey , R.W. and Klein , M.L. 1983 . Comparison of simple potential functions for simulating liquid water . J. Chem. Phys. , 79 : 926 – 935 .
  • Sa , R. , Zhu , W. , Shen , J. , Gong , Z. , Cheng , J. , Chen , K. and Jiang , H. 2006 . How does ammonium dynamically interact with benzene in aqueous media? A first principle study using the Car–Parrinello molecular dynamics method . J. Phys. Chem. B , 110 : 5094 – 5098 .
  • Car , R. and Parrinello , M. 1985 . Unified approach for molecular dynamics and density-functional theory . Phys. Rev. Lett. , 55 : 2471 – 2474 .
  • Desnoyers , J.E. , Pelletier , G.E. and Jolicoeur , C. 1965 . Salting-in by quaternary ammonium salts . Can. J. Chem. , 43 : 3232 – 3237 .
  • Hallén , D. , Wadsö , I. , Wasserman , D.J. , Robert , C.H. and Gill , S.J. 1988 . Enthalpy of dimerization of benzene in water . J. Phys. Chem. , 92 : 3623 – 3625 .
  • Linse , P. 1993 . Orientation-averaged benzene–benzene potential of mean force in aqueous solution . J. Am. Chem. Soc. , 115 : 8793
  • Chipot , C. , Jaffe , R. , Maigret , B. , Pearlman , D.A. and Kollman , P.A. 1996 . Benzene dimer: A good model for π–π interactions in proteins? A comparison between the benzene and the toluene dimers in the gas phase and in an aqueous solution . J. Am. Chem. Soc. , 118 : 11217 – 11224 .
  • Hagiwara , Y. , Matsumura , H. and Tateno , M. 2009 . Functional roles of a structural element involving Na+–π interactions in the catalytic site of T1 lipase revealed by molecular dynamics simulations . J. Am. Chem. Soc. , 131 : 16697 – 16705 .
  • Burley , S.K. and Petsko , G.A. 1986 . Amino–aromatic interactions in proteins . FEBS Lett. , 203 : 139 – 143 .
  • Singh , J. and Thornton , J.M. 1990 . SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups . J. Mol. Biol. , 211 : 595 – 615 .
  • Mitchell , J.B. , Nandi , C.L. , McDonald , I.K. , Thornton , J.M. and Price , S.L. 1994 . Amino/aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding? . J. Mol. Biol. , 239 : 315 – 331 .
  • Glaser , F. , Steinberg , D.M. , Vakser , I.A. and Ben-Tal , N. 2001 . Residue frequencies and pairing preferences at protein–protein interfaces . Proteins Struct. Funct. Genet. , 43 : 89 – 102 .
  • Crowley , P.B. and Golovin , A. 2005 . Cation–π interactions in protein–protein interfaces . Proteins , 59 : 231 – 239 .
  • Adamian , L. and Liang , J. 2001 . Helix–helix packing and interfacial pairwise interactions of residues in membrane proteins . J. Mol. Biol. , 311 : 891 – 907 .
  • Landolt-Marticorena , C. , Williams , K.A. , Deber , C.M. and Reithmeier , R.A. 1993 . Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins . J. Mol. Biol. , 229 : 602 – 608 .
  • Arkin , I.T. and Brunger , A.T. 1998 . Statistical analysis of predicted transmembrane α-helices . Biochim. Biophys. Acta , 1429 : 113 – 128 .
  • Reddy , A.S. , Vijay , D. , Sastry , G.M. and Sastry , G.N. 2006 . From subtle to substantial: Role of metal ions on π–π interactions . J. Phys. Chem. B , 110 : 2479 – 2481 .
  • Chelli , R. and Procacci , P. 2006 . Comment on ‘From subtle to substantial: Role of metal ions on π-π interactions’ . J. Phys. Chem. B , 110 : 10204 – 10205 .
  • Reddy , A.S. , Vijay , D. , Sastry , G.M. and Sastry , G.N. 2006 . Reply to ‘Comment on “From subtle to substantial: Role of metal ions on π-π interactions”’ . J. Phys. Chem. B , 110 : 10206 – 10207 .
  • Shi , Z. , Olson , C.A. and Kallenbach , N.R. 2002 . Cation–π interaction in model α-helical peptides . J. Am. Chem. Soc. , 124 : 3284 – 3291 .
  • Andrew , C.D. , Bhattacharjee , S. , Kokkoni , N. , Hirst , J.D. , Jones , G.R. and Doig , A.J. 2002 . Stabilizing interactions between aromatic and basic side chains in α-helical peptides and proteins. Tyrosine effects on helix circular dichroism . J. Am. Chem. Soc. , 124 : 12706 – 12714 .
  • Tsou , L.K. , Tatko , C.D. and Waters , M.L. 2002 . Simple cation − π interaction between a phenyl ring and a protonated amine stabilizes an α-helix in water . J. Am. Chem. Soc. , 124 : 14917 – 14921 .
  • Tatko , C.D. and Waters , M.L. 2003 . The geometry and efficacy of cation–π interactions in a diagonal position of a designed β-hairpin . Protein Sci. , 12 : 2443 – 2452 .
  • Riemen , A.J. and Waters , M.L. 2009 . Design of highly stabilized β-hairpin peptides through cation–π interactions of lysine and n-methyllysine with an aromatic pocket . Biochem. , 48 : 1525 – 1531 .
  • Sorin , E.J. and Pande , V.S. 2005 . Empirical force-field assessment: The interplay between backbone torsions and noncovalent term scaling . J. Comput. Chem. , 26 : 682 – 690 .
  • Duan , Y. and Kollman , P.A. 1998 . Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution . Science , 282 : 740 – 744 .
  • van der Spoel , D. and Lindahl , E. 2003 . Brute-force molecular dynamics simulations of villin headpiece: Comparison with NMR parameters . J. Phys. Chem. B , 107 : 11178 – 11187 .
  • Wickstrom , L. , Bi , Y. , Hornak , V. , Raleigh , D.P. and Simmerling , C. 2007 . Reconciling the solution and X-ray structures of the villin headpiece helical subdomain: Molecular dynamics simulations and double mutant cycles reveal a stabilizing cation–π interaction . Biochemistry , 46 : 3624 – 3634 .
  • Ensign , D.L. , Kasson , P.M. and Pande , V.S. 2007 . Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece . J. Mol. Biol. , 374 : 806 – 816 .
  • Freddolino , P.L. and Schulten , K. 2009 . Common structural transitions in explicit-solvent simulations of villin headpiece folding . Biophys. J. , 97 : 2338 – 2347 .
  • Piana , S. , Lindorff-Larsen , K. and Shaw , D.E. 2011 . How robust are protein folding simulations with respect to force field parameterization? . Biophys. J. , 100 : L47 – L49 .
  • Schnieders , M.J. , Fenn , T.D. , Pande , V.S. and Brunger , A.T. 2009 . Polarizable atomic multipole X-ray refinement: application to peptide crystals . Acta Crystallogr. D Biol. Crystallogr. , 65 : 952 – 965 .
  • Fenn , T.D. , Schnieders , M.J. , Brunger , A.T. and Pande , V.S. 2010 . Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules . Biophys. J. , 98 : 2984 – 2992 .
  • Schnieders , M.J. , Fenn , T.D. and Pande , V.S. 2011 . Polarizable atomic multipole X-ray refinement: Particle mesh Ewald electrostatics for macromolecular crystals . J. Chem. Theory Comput. , 7 : 1141 – 1156 .
  • Eleftheriou , M. , Germain , R.S. , Royyuru , A.K. and Zhou , R. 2006 . Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields . J. Am. Chem. Soc. , 128 : 13388 – 13395 .
  • Zhou , R. , Eleftheriou , M. , Hon , C.-C. , Germain , R.S. , Royyuru , A.K. and Berne , B.J. 2008 . Massively parallel molecular dynamics simulations of lysozyme unfolding . IBM J. Res. Dev. , 52 : 19 – 30 .
  • Donini , O. and Weaver , D.F. 1998 . Development of modified force field for cation–amino acid interactions: Ab initio-derived empirical correction terms with comments on cation–π interactions . J. Comput. Chem. , 19 : 1515 – 1525 .
  • Misura , K.M.S. , Morozov , A.V. and Baker , D. 2004 . Analysis of anisotropic side-chain packing in proteins and application to high-resolution structure prediction . J. Mol. Biol. , 342 : 651 – 664 .
  • Lu , M. , Dousis , A.D. and Ma , J. 2008 . OPUS-PSP: An orientation-dependent statistical all-atom potential derived from side-chain packing . J. Mol. Biol. , 376 : 288 – 301 .
  • Gilis , D. , Biot , C. , Buisine , E. , Dehouck , Y. and Rooman , M. 2006 . Development of novel statistical potentials describing cation–π interactions in proteins and comparison with semiempirical and quantum chemistry approaches . J. Chem. Inf. Model. , 46 : 884 – 893 .
  • Yau , W.M. , Wimley , W.C. , Gawrisch , K. and White , S.H. 1998 . The preference of tryptophan for membrane interfaces . Biochemistry , 37 : 14713 – 14718 .
  • Chan , D.I. , Prenner , E.J. and Vogel , H.J. 2006 . Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action . Biochim. Biophys. Acta , 1758 : 1184 – 1202 .
  • Grossfield , A. and Woolf , T.B. 2002 . Interaction of tryptophan analogs with POPC lipid bilayers investigated by molecular dynamics calculations . Langmuir , 18 : 198 – 210 .
  • Petersen , F.N.R. , Jensen , M.Ø. and Nielsen , C.H. 2005 . Interfacial tryptophan residues: A role for the cation–π effect? . Biophys. J. , 89 : 3985 – 3996 .
  • Norman , K.E. and Nymeyer , H. 2006 . Indole localization in lipid membranes revealed by molecular simulation . Biophys. J. , 91 : 2046 – 2054 .
  • Raines , D.E. , Gioia , F. , Claycomb , R.J. and Stevens , R.J. 2004 . The N-methyl-d-aspartate receptor inhibitory potencies of aromatic inhaled drugs of abuse: Evidence for modulation by cation–π interactions . J. Pharmacol. Expp. Ther. , 311 : 14 – 21 .
  • Imai , Y.N. , Inoue , Y. and Yamamoto , Y. 2007 . Propensities of polar and aromatic amino acids in noncanonical interactions: Nonbonded contacts analysis of protein–ligand complexes in crystal structures . J. Med. Chem. , 50 : 1189 – 1196 .
  • Scrutton , N.S. and Raine , A.R. 1996 . Cation–π bonding and amino–aromatic interactions in the biomolecular recognition of substituted ammonium ligands . Biochem. J. , 319 : 1 – 8 .
  • Hendlich , M. 1998 . Databases for protein–ligand complexes . Acta Crystallogr. D Biol. Crystallogr. , 54 : 1178 – 1182 .
  • Hendlich , M. , Bergner , A. , Günther , J. and Klebe , G. 2003 . Relibase: Design and development of a database for comprehensive analysis of protein–ligand interactions . J. Mol. Biol. , 326 : 607 – 620 .
  • Biot , C. , Buisine , E. , Kwasigroch , J.-M. , Wintjens , R. and Rooman , M. 2002 . Probing the energetic and structural role of amino acid/nucleobase cation–π interactions in protein–ligand complexes . J. Biol. Chem. , 277 : 40816 – 40822 .
  • Satow , Y. , Cohen , G.H. , Padlan , E.A. and Davies , D.R. 1986 . Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 Å . J. Mol. Biol. , 190 : 593 – 604 .
  • Novotny , J. , Bruccoleri , R.E. and Saul , F.A. 1989 . On the attribution of binding energy in antigen–antibody complexes McPC 603, D1.3, and HyHEL-5 . Biochemistry , 28 : 4735 – 4749 .
  • Sussman , J.L. , Harel , M. , Frolow , F. , Oefner , C. , Goldman , A. , Toker , L. and Silman , I. 1991 . Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein . Science , 253 : 872 – 879 .
  • Harel , M. , Schalk , I. , Ehret-Sabatier , L. , Bouet , F. , Goeldner , M. , Hirth , C. , Axelsen , P.H. , Silman , I. and Sussman , J.L. 1993 . Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase . Proc. Natl. Acad. Sci. , 90 : 9031 – 9035 .
  • Verdonk , M.L. , Boks , G.J. , Kooijman , H. , Kanters , J.A. and Kroon , J. 1993 . Stereochemistry of charged nitrogen–aromatic interactions and its involvement in ligand–receptor binding . J. Comput. Aided Mol. Des. , 7 : 173 – 182 .
  • Campagna-Slater , V. , Arrowsmith , A.G. , Zhao , Y. and Schapira , M. 2010 . Pharmacophore screening of the protein data bank for specific binding site chemistry . J. Chem. Inf. Model. , 50 : 358 – 367 .
  • Campagna-Slater , V. and Schapira , M. 2010 . Finding Inspiration in the Protein Data Bank to chemically antagonize readers of the histone code . Mol. Informatics , 29 : 322 – 331 .
  • Dougherty , D.A. 2009 . In vivo studies of receptors and ion channels with unnatural amino acids . Nucleic Acids Mol. Biol. , 22 : 231 – 254 .
  • Quiñonero , D. , Garau , C. , Frontera , A. , Ballester , P. , Costa , A. and Deyà , P.M. 2005 . Structure and binding energy of anion–π and cation–π complexes: A comparison of MP2, RI-MP2, DFT, and DF-DFT methods . J. Phys. Chem. A , 109 : 4632 – 4637 .
  • Zhong , W. , Gallivan , J.P. , Zhang , Y. , Li , L. , Lester , H.A. and Dougherty , D.A. 1998 . From ab initio quantum mechanics to molecular neurobiology: A cation–π binding site in the nicotinic receptor . Proc. Natl. Acad. Sci. , 95 : 12088 – 12093 .
  • Xiu , X. , Puskar , N.L. , Shanata , J.A.P. , Lester , H.A. and Dougherty , D.A. 2009 . Nicotine binding to brain receptors requires a strong cation–π interaction . Nature , 458 : 534 – 538 .
  • Beene , D.L. , Brandt , G.S. , Zhong , W. , Zacharias , N.M. , Lester , H.A. and Dougherty , D.A. 2002 . Cation–π interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: The anomalous binding properties of nicotine . Biochemistry , 41 : 10262 – 10269 .
  • Mu , T.-W. , Lester , H.A. and Dougherty , D.A. 2003 . Different binding orientations for the same agonist at homologous receptors: A lock and key or a simple wedge? . J. Am. Chem. Soc. , 125 : 6850 – 6851 .
  • Padgett , C.L. , Hanek , A.P. , Lester , H.A. , Dougherty , D.A. and Lummis , S.C.R. 2007 . Unnatural amino acid mutagenesis of the GABAA receptor binding site residues reveals a novel cation–π interaction between GABA and β2Tyr97 . J. Neurosci. , 27 : 886 – 892 .
  • Lummis , S.C.R. , Beene , D.L. , Harrison , N.J. , Lester , H.A. and Dougherty , D.A. 2005 . A cation–π binding interaction with a tyrosine in the binding site of the GABAC receptor . Chem. Biol. , 12 : 993 – 997 .
  • Pless , S.A. , Millen , K.S. , Hanek , A.P. , Lynch , J.W. , Lester , H.A. , Lummis , S.C.R. and Dougherty , D.A. 2008 . A cation–π interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue . J. Neurosci. , 28 : 10937 – 10942 .
  • Torrice , M.M. , Bower , K.S. , Lester , H.A. and Dougherty , D.A. 2009 . Probing the role of the cation–π interaction in the binding sites of GPCRs using unnatural amino acids . Proc. Natl. Acad. Sci. , 106 : 11919 – 11924 .
  • Dölker , N. , Deupi , X. , Pardo , L. and Campillo , M. 2007 . Charge–charge and cation–π interactions in ligand binding to G protein-coupled receptors . Theor. Chem. Acc. , 118 : 579 – 588 .
  • Xu , Y. , Shen , J. , Zhu , W. , Luo , X. , Chen , K. and Jiang , H. 2005 . Influence of the water molecule on cation–π interaction: Ab initio second order Møller–Plesset perturbation theory (MP2) calculations . J. Phys. Chem. B , 109 : 5945 – 5949 .
  • Armstrong , C.M. 1971 . Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons . J. Gen. Physiol. , 58 : 413 – 437 .
  • French , R.J. and Shoukimas , J.J. 1981 . Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes . Biophys. J. , 34 : 271 – 291 .
  • Heginbotham , L. and MacKinnon , R. 1992 . The aromatic binding site for tetraethylammonium ion on potassium channels . Neuron , 8 : 483 – 491 .
  • Heginbotham , L. , LeMasurier , M. , Kolmakova-Partensky , L. and Miller , C. 1999 . Single Streptomyces lividans K+ channels: Functional asymmetries and sidedness of proton activation . J. Gen. Physiol. , 114 : 551 – 559 .
  • Meuser , D. , Splitt , H. , Wagner , R. and Schrempf , H. 1999 . Exploring the open pore of the potassium channel from Streptomyces lividans . FEBS Lett. , 462 : 447 – 452 .
  • Luzhkov , V.B. and Åqvist , J. 2001 . Mechanisms of tetraethylammonium ion block in the KcsA potassium channel . FEBS Lett. , 495 : 191 – 196 .
  • Crouzy , S. , Bernèche , S. and Roux , B. 2001 . Extracellular blockade of K+ channels by TEA: Results from molecular dynamics simulations of the KcsA channel . J. Gen. Physiol. , 118 : 207 – 217 .
  • Guidoni , L. and Carloni , P. 2002 . Tetraethylammonium binding to the outer mouth of the KcsA potassium channel: Implications for ion permeation . J. Recept. Signal Transduct. , 22 : 315 – 331 .
  • Luzhkov , V.B. , Österberg , F. and Åqvist , J. 2003 . Structure–activity relationship for extracellular block of K+ channels by tetraalkylammonium ions . FEBS Lett. , 554 : 159 – 164 .
  • W.F. van Gunsteren and H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, BIOMOS b.v., Groningen, 1987.
  • Lenaeus , M.J. , Vamvouka , M. , Focia , P.J. and Gross , A. 2005 . Structural basis of TEA blockade in a model potassium channel . Nat. Struct. Mol. Biol. , 12 : 454 – 459 .
  • Ahern , C.A. , Eastwood , A.L. , Lester , H.A. , Dougherty , D.A. and Horn , R. 2006 . A cation–π interaction between extracellular TEA and an aromatic residue in potassium channels . J. Gen. Physiol. , 128 : 649 – 657 .
  • Roux , B. 2006 . Extracellular blockade of potassium channels by TEA+: The tip of the iceberg? . J. Gen. Physiol. , 128 : 635 – 636 .
  • Bisset , D. and Chung , S.-H. 2008 . Efficacy of external tetraethylammonium block of the KcsA potassium channel: Molecular and Brownian dynamics studies . Biochim. Biophys. Acta , 1778 : 2273 – 2282 .
  • Ahern , C.A. , Eastwood , A.L. , Dougherty , D.A. and Horn , R. 2009 . An electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels . J. Gen. Physiol. , 134 : 461 – 469 .
  • Olcese , R. 2009 . It's spring-time for slow inactivation . J. Gen. Physiol. , 134 : 457 – 459 .
  • Santarelli , V.P. , Eastwood , A.L. , Dougherty , D.A. , Horn , R. and Ahern , C.A. 2007 . A cation–π interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block . J. Biol. Chem. , 282 : 8044 – 8051 .
  • Santarelli , V.P. , Eastwood , A.L. , Dougherty , D.A. , Ahern , C.A. and Horn , R. 2007 . Calcium block of single sodium channels: Role of a pore-lining aromatic residue . Biophys. J. , 93 : 2341 – 2349 .
  • Khademi , S. , O'Connell , J. , Remis , J. , Robles-Colmenares , Y. , Miercke , L.J.W. and Stroud , R.M. 2004 . Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å . Science , 305 : 1587 – 1594 .
  • Zheng , L. , Kostrewa , D. , Bernèche , S. , Winkler , F.K. and Li , X.-D. 2004 . The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli . Proc. Natl. Acad. Sci. , 101 : 17090 – 17095 .
  • Javelle , A. , Lupo , D. , Ripoche , P. , Fulford , T. , Merrick , M. and Winkler , F.K. 2008 . Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB . Proc. Natl. Acad. Sci. , 105 : 5040 – 5045 .
  • Lamoureux , G. , Javelle , A. , Baday , S. , Wang , S. and Bernèche , S. 2010 . Transport mechanisms in the ammonium transporter family . Transfus. Clin. Biol. , 17 : 168 – 175 .
  • Liu , Y. and Hu , X. 2006 . Molecular determinants for binding of ammonium ion in the ammonia transporter AmtB – A quantum chemical analysis . J. Phys. Chem. A , 110 : 1375 – 1381 .
  • Nygaard , T.P. , Alfonso-Prieto , M. , Peters , G.H. , Jensen , M.Ø. and Rovira , C. 2010 . Substrate recognition in the Escherichia coli ammonia channel AmtB: A QM/MM investigation . J. Phys. Chem. B , 114 : 11859 – 11865 .
  • Lin , Y. , Cao , Z. and Mo , Y. 2006 . Molecular dynamics simulations on the Escherichia coli ammonia channel protein AmtB: Mechanism of ammonia/ammonium transport . J. Am. Chem. Soc. , 128 : 10876 – 10884 .
  • Lin , Y. , Cao , Z. and Mo , Y. 2009 . Functional role of Asp160 and the deprotonation mechanism of ammonium in the Escherichia coli ammonia channel protein AmtB . J. Phys. Chem. B , 113 : 4922 – 4929 .
  • Akgun , U. and Khademi , S. 2011 . Periplasmic vestibule plays an important role for solute recruitment, selectivity, and gating in the Rh/Amt/MEP superfamily . Proc. Natl. Acad. Sci. , 108 : 3970 – 3975 .
  • Bostick , D.L. and Brooks , C.L. III . 2007 . Deprotonation by dehydration: The origin of ammonium sensing in the AmtB channel . PLoS Comput. Biol. , 3 : 16 pp e22
  • Luzhkov , V.B. , Almlöf , M. , Nervall , M. and Åqvist , J. 2006 . Computational study of the binding affinity and selectivity of the bacterial ammonium transporter AmtB . Biochemistry , 45 : 10807 – 10814 .
  • Brugé , F. , Bernasconi , M. and Parrinello , M. 1999 . Density-functional study of hydration of ammonium in water clusters . J. Chem. Phys. , 110 : 4734 – 4736 .
  • Amicangelo , J.C. and Armentrout , P.B. 2000 . Absolute binding energies of alkali-metal cation complexes with benzene determined by threshold collision-induced dissociation experiments and ab initio theory . J. Phys. Chem. A , 104 : 11420 – 11432 .
  • Woodin , R.L. and Beauchamp , J.L. 1978 . Binding of Li+ to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids . J. Am. Chem. Soc. , 100 : 501 – 508 .
  • Guo , B.C. , Purnell , J.W. and Castleman , A.W. 1990 . The clustering reactions of benzene with sodium and lead ions . Chem. Phys. Lett. , 168 : 155 – 160 .
  • Deakyne , C.A. and Meot-Ner , M. 1985 . Unconventional ionic hydrogen bonds. 2. NH+···π. Complexes of onium ions with olefins and benzene derivatives . J. Am. Chem. Soc. , 107 : 474 – 479 .
  • Meot-Ner , M. and Deakyne , C.A. 1985 . Unconventional ionic hydrogen bonds. 1. CHδ+···X. Complexes of quaternary ions with n- and π-donors . J. Am. Chem. Soc. , 107 : 469 – 474 .
  • Coletti , C. and Re , N. 2006 . Theoretical study of alkali cation–benzene complexes: Potential energy surfaces and binding energies with improved results for rubidium and cesium . J. Phys. Chem. A , 110 : 6563 – 6570 .
  • Frisch , M.J. , Trucks , G.W. , Schlegel , H.B. , Scuseria , G.E. , Robb , M.A. , Cheeseman , J.R. , Scalmani , G. , Barone , V. , Mennucci , B. , Petersson , G.A. , Nakatsuji , H. , Caricato , M. , Li , X. , Hratchian , H.P. , Izmaylov , A.F. , Bloino , J. , Zheng , G. , Sonnenberg , J.L. , Hada , M. , Ehara , M. , Toyota , K. , Fukuda , R. , Hasegawa , J. , Ishida , M. , Nakajima , T. , Honda , Y. , Kitao , O. , Nakai , H. , Vreven , T. , Montgomery , J.A. Jr , Peralta , J.E. , Ogliaro , F. , Bearpark , M. , Heyd , J.J. , Brothers , E. , Kudin , K.N. , Staroverov , V.N. , Kobayashi , R. , Normand , J. , Raghavachari , K. , Rendell , A. , Burant , J.C. , Iyengar , S.S. , Tomasi , J. , Cossi , M. , Rega , N. , Millam , J.M. , Klene , M. , Knox , J.E. , Cross , J.B. , Bakken , V. , Adamo , C. , Jaramillo , J. , Gomperts , R. , Stratmann , R.E. , Yazyev , O. , Austin , A.J. , Cammi , R. , Pomelli , C. , Ochterski , J.W. , Martin , R.L. , Morokuma , K. , Zakrzewski , V.G. , Voth , G.A. , Salvador , P. , Dannenberg , J.J. , Dapprich , S. , Daniels , A.D. , Farkas , Ö. , Foresman , J.B. , Ortiz , J.V. , Cioslowski , J. and Fox , D.J. 2009 . Gaussian 09, Revision A.1 , Wallingford, CT : Gaussian, Inc. .
  • Beglov , D. and Roux , B. 1994 . Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations . J. Chem. Phys. , 100 : 9050 – 9063 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.