479
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Parametric dependence on shear viscosity of SPC/E water from equilibrium and non-equilibrium molecular dynamics simulations

&
Pages 728-733 | Received 19 Sep 2012, Accepted 19 Dec 2012, Published online: 15 Feb 2013

REFERENCES

  • B.L.Holian and D.J.Evans, Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics, J. Chem. Phys. 78 (1983), pp. 5147–5150.
  • M.Schoen and C.Hoheisel, The shear viscosity of a Lennard-Jones fluid calculated by equilibrium molecular dynamics, Mol. Phys. 56 (1985), pp. 653–672.
  • D.M.Heyes and S.R.Preston, Transport coefficients of Ar—Kr mixtures by molecular dynamics computer simulation, Phys. Chem. Liq.23 (1991), pp. 123–149.
  • M.F.Pas and B.Zwolinski, Computation of the transport coefficients of binary mixtures of argon-krypton, krypton-xenon, and argon-xenon by molecular dynamics, Mol. Phys. 73 (1991), pp. 483–494.
  • D.M.Heyes, Molecular dynamics simulations of liquid binary mixtures: Partial properties of mixing and transport coefficients, J. Chem. Phys. 96 (1992), pp. 2217–2227.
  • S.Balasubramanian, C.J.Mundy, and M.L.Klein, Shear viscosity of polar fluids: Molecular dynamics calculations of water, J. Chem. Phys. 105 (1996), pp. 11190–11195.
  • H.J.C.Berendsen, J.R.Grigera, and T.P.Straatsma, The missing term in effective pair potentials, J. Chem. Phys. 91 (1987), pp. 6269–6271.
  • S.Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984), pp. 255–268.
  • W.G.Hoover, Canonical dynamics: Equilibrium phase space distributions, Phys. Rev. A31 (1985), pp. 1695–1697.
  • R.L.Rowley and M.M.Paiter, Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations, Int. J. Thermophys. 18 (1997), pp. 1109–1121.
  • B.Hess, Determining the shear viscosity of model liquids from molecular dynamics simulations, J. Chem. Phys. 116 (2002), pp. 209–217.
  • H.J.C.Berendsen, Transport properties computed by linear response through weak coupling to a bath, in Computer Simulations in Material Science, M.Meyer, and V.Pontikis, eds., Kluwer, Dordrecht, 1991, pp. 139–155.
  • P.Bordat and F.Müller-Plathe, The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics, J. Chem. Phys. 116 (2002), pp. 3362–3369.
  • J.C.Thomas and R.L.Rowley, Transient molecular dynamics simulations of viscosity for simple fluids, J. Chem. Phys. 127 (2007), p. 174510 1–8.
  • S.Kuang and J.D.Gezeltr, A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity, J. Chem. Phys. 133 (2010), 164101–9.
  • G.Bussi, D.Donadio, and M.Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (2007), 014101–7.
  • B.J.Palmer, Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids, Phys. Rev. E49 (1994), pp. 359–366.
  • G.Ciccotti, G.Jacucci, and I.R.McDonald, “Thought-Experiments” by molecular dynamics, J. Stat. Phys. 21 (1979), 174510 1–22.
  • B.Hess, C.Kutzner, D.Spoelvan der, and E.Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation J. Chem, Theory. Comput. 4 (2008), pp. 435–447.
  • M.P.Allen and D.J.Tildesley, Computer Simulation of Liquids, Oxford Science Publications, New York, 1987.
  • T.Darden, D.York, and L.Pedersen, Particle mesh Ewald: An N -log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993), pp. 10089–10092.
  • U.Essmann, L.Perera, M.L.Berkowitz, T.Darden, H.Lee, and L.G.Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995), pp. 8577–8593.
  • H.J.C.Berendsen, J.P.M.Postma, A.DiNola, and J.R.Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984), pp. 3684–3690.
  • S.Nosé, Constant temperature molecular dynamics methods, Prog. Theoret. Phys. Suppl. 103 (1991), pp. 1–46.
  • B.L.Holian, A.F.Voter, and R.Ravelo, Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nose′-Hoover dynamics, Physical Review E52 (1995), pp. 2338–2347.
  • K.Binder, J.Horbach, W.Kob, W.Paul, and F.Varnik, Molecular dynamics simulations, J. Phys.: Condens. Matter. 16 (2004), pp. S429–S453.
  • F.Sofos, T.E.Karakasidis, and A.Liakopoulos, Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity introduced by the solid walls, Int. J. Heat Mass Transfer. 52 (2009), pp. 735–743.
  • F.Sofos, T.E.Karakasidis, and A.Liakopoulos, Effect of wall roughness on shear viscosity and diffusion in nanochannels, Int. J. Heat Mass Transfer. 53 (2010), pp. 3839–3846.
  • R.C.Weast and M.J.Astle, CRC Handbook of Chemistry and Physics, Ed. 63, CRC Press, Boca Raton, FL, 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.