429
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Physical properties of liquid hexane and derived polar by-products of hexane autoxidation: molecular dynamics calculations using the TraPPE-UA force field

&
Pages 882-894 | Received 23 Oct 2012, Accepted 05 Feb 2013, Published online: 09 Apr 2013

REFERENCES

  • OlahG, MolnarA. Hydrocarbon chemistry. Hoboken, New Jersey: Wiley; 2003.
  • GoosenA, MorganDH. Autoxidation of nonane and decane: a product study. J Chem Soc Perkin Trans. 1994;2:557–562.
  • BlaineS, SavagePE. Reaction pathways in lubricant degradation. 2. n-hexadecane autoxidation. Ind Eng Chem Res. 1991;30:2185–2191.
  • StarkMS, WilkinsonJJ, SmithJRL, AlfadhlA, PochopienBA. Autoxidation of branched alkanes in the liquid phase. Ind Eng Chem Res. 2011;50:817–823.
  • BordatP, Müller-PlatheF. The shear viscosity of molecular fluids: a calculation by reverse nonequilibrium molecular dynamics. J Chem Phys. 2002;116:3362–3369.
  • KioupisLI, MaginnEJ. Rheology, dynamics, and structure of hydrocarbon blends: a molecular dynamics study of n-hexane/n-hexadecane mixtures. Chem Eng J. 1999;74:129–146.
  • MeerwallvonE, BeckmanS, JangJ, MatticeWL. Diffusion of liquid n-alkanes: free-volume and density effects. J Chem Phys. 1998;108:4299–4304.
  • KelkarMS, RaffertyJL, MaginnEJ, SiepmannJI. Prediction of viscosities and vaporliquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 2007;260:218–231.
  • KioupisLI, MaginnEJ. Molecular simulation of poly-(-olefin synthetic lubricants: impact of molecular architecture on performance properties. J Phys Chem. B. 1999;49:10781–10790.
  • PatelSA, BrooksCL. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. J Chem Phys. 2006;124: 204706 1–14.
  • KongL, DennistonC, MüserM. The crucial role of chemical detail for slip boundary conditions. Model Simul Mater Sci Eng. 2010;18:0340041–17.
  • HenryA, ChenG. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys Rev Lett. 2008;101: 235502 1–4.
  • ChenowethK, DuinvanACT, IIIWAG. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem. A. 2008;112:1040–1053.
  • McDonaldIR. NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol. Phys. 1972;23:41–58.
  • PlimptonS. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys. 1995;117:1–19.
  • KamathG, CaoF, PotoffJJ. An improved force field for the prediction of the vaporliquid equilibria for carboxylic acids. J Phys Chem B. 2004;108:14130–14136.
  • CliffordS, BoltonK, RamjugernathD. Monte Carlo simulation of carboxylic acid phase equilibria. J Phys Chem B. 2006;110: 21938–21943.
  • MartinMG, SiepmannJI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102:2569–2577.
  • ChenB, PotoffJJ, SiepmannJI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B. 2001;105:3093–3104.
  • StubbsJ, PotoffJ, SiepmannJ. Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B. 2004;108:17596–17605.
  • TuckermanME, MundyCJ, BalasubramanianS, KleinML. Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J Chem Phys. 1997;106:5615–5621.
  • KnapstadB, SkjolsvikPA, OyeHA. Viscosity of three binary hydrocarbon mixtures. J Chem Eng Data. 1991;36:84–88.
  • DjojoputroH, IsmadjiS. Density and viscosity of several aldehydes fragrance compounds in their binary mixtures with ethanol at (298.15 K, 308.15 K, and 318.15 K). J Chem Eng Data. 2005;50:2003–2007.
  • MalhotraR, WoolfLA. Volumetric measurements of liquid pentan-2-one, hexan-2-one, and 4-methylpentan-2-one at temperatures from 278.15 K to 338.13. J Chem Thermodyn. 1996;28:1411–1421.
  • TrenzadoJL, MatosJS, GonzalezE, RomanoE, CaroMN. Study on properties derived from densities and viscosities for the ternary systems (methyl pentanoate or methyl heptanoate) + octane +1-hexanol and their binary subsystems at various temperatures. J Chem Eng Data. 2003;48:1004–1014.
  • Bernardo-GilG, EsquivelM, RibeiroA. Densities and refractive indices of pure organic acids as a function of temperature. J Chem Eng Data. 1990;35:202–204.
  • ThomasJC, RowleyRL. Transient molecular dynamics simulations of liquid viscosity for nonpolar and polar fluids. J Chem Phys. 2011;134: 0245261–9.
  • Nieto-DraghiC, UngererP, RousseauB. Optimization of the anisotropic united atoms intermolecular potential for n-alkanes: improvement of transport properties. J Chem Phys. 2006;125: 044517 1–15.
  • AucejoA, BurguetMC, MuñozR, MarquesJL. Densities, viscosities, and refractive indices of some n-alkane binary liquid systems at 298.15 K. J Chem Eng Data. 1995;40:141–147.
  • FermegliaM, LapasinR, TorrianoG. Excess volumes and viscosities of binary systems containing 4-methyl-2-pentanone. J Chem Eng Data. 1990;35:260–265.
  • AudonnetF, PáduaAAH. Density and viscosity of mixtures of n-hexane and 1-hexanol from 303 to 423 K up to 50 MPa. Int J Thermophys. 2002;23:1537–1550.
  • KynastonW, MartinJF. Thermal conductivity and viscosity of normal C2-C6 aliphatic carboxylic acids. J Appl Chem Biotechnol. 1977;27:296–302.
  • WatanabeH, SeongDJ. The thermal conductivity and thermal diffusivity of liquid n-alkanes: CnH2n+2 (n = 5 to 10) and toluene. Int J Thermophys. 2002;23:337–356.
  • BashirovMM, NazievYM. Investigation of the thermal conductivity of methanol n-hexanol mutual solutions at high parameters of state. Teplofiz Vys Temp. 2003;41:527–533.
  • LiessmannG, SchmidtW, ReiffarthS. Recommended thermophysical data. Data compilation of the Saechsische Olefinwerke Boehlen. 1995:33.
  • MadzhidovK. Thermal conductivity of ketones as a function of temperature and pressure. Inzh-Fiz Zh. 1984;47:256–262.
  • Müller-PlatheF. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106:6082–6085.
  • ZhangM, LussettiE, SouzadeLES, Müller-PlatheF. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J Phys Chem B. 2005;109:15060–15067.
  • SastryNV, RajMM. Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and+heptane at 303.15 and 313.15 K. J Chem Eng Data. 1996;41:612–618.
  • Hernandez-MuñozP, CatalaR, HernandezRJ, GavaraR. Food aroma mass transport in metallocene ethylene-based copolymers for packaging applications. J Agric Food Chem. 1998;46:5238–5243.
  • Wohlfarth C, Wohlfarth B, Landolt-Börnstein, New Series; 1997. Avaliable from: http://lb.chemie.uni-hamburg.de/.
  • BitzekE, KoskinenP, GahlerF, MoselerM, GumbschP. Structural relaxation made simple. Phys Rev Lett. 2006;97: 170201 1–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.