90
Views
1
CrossRef citations to date
0
Altmetric
Articles

Computer simulations of the two-species model for the melting curve maximum

&
Pages 370-378 | Received 23 Dec 2012, Accepted 02 Jun 2013, Published online: 13 Sep 2013

REFERENCES

  • OguraH, MatsudaH, OgawaT, OgitaN, UedaA. Computer simulation for the melting curve maximum phenomenon. Prog Theor Phys. 1977;58:419–433.
  • BrazhkinVV, PopovaSV, VoloshinRN. High-pressure transformations in simple melts. High Pressure Res. 1997;15:267–305.
  • YoungDA. Phase diagram of the elements. Berkeley: University of California Press; 1991. ISBN: 0520074831.
  • EremetsMI, TrojanIA. Evidence of maximum in the melting curve of hydrogen at megabar pressures. JETP Lett. 2009;89:174–179.
  • TogayaM. Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys Rev Lett. 1997;79:2474–2477.
  • BrazhkinV, PopovaS, VoloshinR. Pressure–temperature phase diagram of molten elements: selenium, sulfur and iodine. Physica B. 1999;265:64–71.
  • BundyFP. Phase diagrams of silicon and germanium to 200 kbar, 1000°C. J Chem Phys. 1964;41:3809–3814.
  • JayaramanA, KlementWJr, NewtonR, KennedyG. Fusion curves and polymorphic transitions of the group III elements – aluminum, gallium, indium and thallium – at high pressures. J Phys Chem Solids. 1963;24:7–18.
  • KlementWJr, JayaramanA, KennedyGC. Phase diagrams of arsenic, antimony, and bismuth at pressures up to 70 kbars. Phys Rev. 1963;131:632–637.
  • UmnovAG, BrazhkinVV. Pressure–temperature diagram of liquid antimony. High Pressure Res. 1995;13:233–241.
  • UmnovAG, BrazhkinVV, PopovaSV, VoloshinRN. Pressure–temperature diagram of liquid bismuth. J Phys Condens Matter. 1992;4:1427–1431.
  • SitaudaB, PéréaJ, ThéveninT. Melting curve determination under high pressure using pulsed laser heating in a diamond anvil cell: application to cerium. High Pressure Res. 1994;12:175–186.
  • HanflandM, SyassenK, ChristensenNE, NovikovDL. New high-pressure phases of lithium. Nature. 2000;408:174–178.
  • LazickiA, FeiY, HemleyRJ. High-pressure differential thermal analysis measurements of the meltingcurve of lithium. Solid State Commun. 2010;150:625–627.
  • GuillaumeCL, GregoryanzE, DegtyarevaO, McMahonMI, HanflandM, EvansS, GuthrieM, SinogeikinSV, MaoHK. Cold melting and solid structures of dense lithium. Nat. Phys. 2011;7:211–214.
  • HanflandM, LoaI, SyassenK. Sodium under pressure: bcc to fcc structural transition and pressure–volume relation to 100 GPa. Phys Rev B. 2002;65:184109.
  • GregoryanzE, DegtyarevaO, SomayazuluM, HemleyRJ, MaokwangH. Melting of dense sodium. Phys Rev Lett. 2005;94:185502.
  • McMahonMI, GregoryanzE, LundegaardLF, LoaI, GuillaumeC, NelmesRJ, KleppeAK, AmboageM, WilhelmH, JephcoatAP. Structure of sodium above 100 GPa by single-crystal X-ray diffraction. Proc Natl Acad Sci USA. 2007;104:17297–17299.
  • GregoryanzE, LundegaardLF, McMahonMI, GuillaumeC, NelmesRJ, MezouarM. Structural diversity of sodium. Science. 2008;320:1054–1057.
  • McMahonMI, NelmesRJ, SchwarzU, SyassenK. Composite incommensurate K-III and a commensurate form: study of a high-pressure phase of potassium. Phys Rev B. 2006;74:140102.
  • NaryginaO, McBrideEE, StintonGW, McMahonMI. Melting curve of potassium to 22 GPa. Phys Rev B. 2011;84:054111.
  • BoehlerR, ZhaCS. Systematics in the melting behavior of the alkali metals from DAC measurements. Physica B+C. 1986;139–140:233–236.
  • KennedyGC, JayaramanA, NewtonRC. Fusion curve and polymorphic transitions of cesium at high pressures. Phys Rev. 1962;126:1363–1366.
  • JayaramanA, NewtonRC, McDonoughJM. Phase relations, resistivity, and electronic structure of cesium at high pressures. Phys Rev. 1967;159:527–533.
  • FalconiS, LundegaardLF, HejnyC, McMahonMI. X-ray diffraction study of liquid Cs up to 9.8 GPa. Phys Rev Lett. 2005;94:125507.
  • MukherjeeGD, BoehlerR. High-pressure melting curve of nitrogen and the liquid–liquid phase transition. Phys Rev Lett. 2007;99:225701.
  • GoncharovAF, CrowhurstJC, StruzhkinVV, HemleyRJ. Triple point on the melting curve and polymorphism of nitrogen at high pressure. Phys Rev Lett. 2008;101:095502.
  • AkahamaY, UtsumiW, EndoS, KikegawaT, IwasakiH, ShimomuraO, YagiT, AkimotoS. Melting curve of black phosphorous. Phys Lett A. 1987;122:129–131.
  • KatayamaY, MizutaniT, UtsumiW, ShimomuraO, YamakataM, FunakoshiichiK. A first-order liquid–liquid phase transition in phosphorus. Nature. 2000;403:170–173.
  • ErrandoneaD, BoehlerR, RossM. Melting of the alkaline-earth metals to 80 GPa. Phys Rev B. 2001;65:012108.
  • DeatonBC, BlumJFA. Properties of group VI B elements under pressure. I. Melting curves of S, Se, and Te. Phys Rev. 1965;137:A1131–A1138.
  • StishovSM, TikhomirovaNA, TonkovEY. The maximum on the melting curve of tellurium. JETP Lett. 1966;4:111–113.
  • BrazhkinVV, VoloshinRN, PopovaSV, UmnovAG. Pressure–temperature phase diagram of solid and liquid Te under pressures up to 10 GPa. J Phys Condens Matter. 1992;4:1419–1425.
  • WinzenickM, HolzapfelWB. Refinement of the P–T phase diagram of barium. Phys Rev B. 1997;55:101–104.
  • TogayaM. Electrical property changes of liquid carbon under high pressures. J Phys Conf Ser. 2010;215:012081.
  • GreenbergY, YahelE, CaspiEN, BenmoreC, BeuneuB, DarielMP, MakovG. Evidence for a temperature-driven structural transformation in liquid bismuth. Europhys Lett. 2009;86:36004.
  • KatsnelsonMI, SinkoGV, SmirnovNA, TrefilovAV, KhromovKV. Structure, elastic moduli, and thermodynamics of sodium and potassium at ultrahigh pressures. Phys Rev B. 2000;61:14420–14424.
  • ChristensenNE, BoersDJ, VelsenvanJL, NovikovDL. Negative thermal expansion coefficient and isostructural transition in fcc cesium. Phys Rev B. 2000;61:R3764–R3767.
  • McMahonMI, NelmesRJ, RekhiS. Complex crystal structure of cesium-III. Phys Rev Lett. 2001;87:255502.
  • MorishitaT. Polymeric liquid of phosphorus at high pressure: first-principles molecular-dynamics simulations. Phys Rev B. 2002;66:054202.
  • FalconiS, AcklandGJ. Ab initio simulations in liquid caesium at high pressure and temperature. Phys Rev B. 2006;73:184204.
  • RatyJY, SchweglerE, BonevSA. Electronic and structural transitions in dense liquid sodium. Nature. 2007;449:448–451.
  • TamblynI, RatyJY, BonevSA. Tetrahedral clustering in molten lithium under pressure. Phys Rev Lett. 2008;101:075703.
  • MaY, EremetsM, OganovAR, XieY, TrojanI, MedvedevS, LyakhovAO, ValleM, PrakapenkaV. Transparent dense sodium. Nature. 2009;458:182–186.
  • DonadioD, SpanuL, DucheminI, GygiF, GalliG. Ab initio investigation of the melting line of nitrogen at high pressure. Phys Rev B. 2010;82:020102.
  • OhmuraS, ShimojoF. Ab initio molecular dynamics study of the metallization of liquid selenium under pressure. Phys Rev B. 2011;83:134206.
  • ZhouD, BaoG, JinX, LiuB, CuiT. Melting curve of the cI16 sodium at high pressure from ab initio calculations. Phys Status Solid B. 2011;248:1143–1148.
  • RapoportE. Electrical resitivity of molten cesium at high pressures. Phys Rev Lett. 1967;19:345–347.
  • RapoportE. Model for melting-curve maxima at high pressure. J Chem Phys. 1967;46:2891–2895.
  • KuramotoY, FurukawaH. Melting curve anomaly and solid–solid phase transition at high pressures. Prog Theor Phys. 1972;47:1069–1086.
  • HooverWG, LaddAJC, MoranB. High-strain-rate plastic flow studied via nonequiliblium molecular dynamics. Phys Rev Lett. 1982;48:1818–1820.
  • EvansDJ, HooverWG, FailorBH, MoranB, LaddAJC. Nonequiliblium molecular dynamics via Gauss's principle of least constraint. Phys Rev A. 1983;28:1016–1021.
  • EvansDJ, MorrissGP. The isothermal/isobaric molecular dynamics ensemble. Phys Lett A. 1983;98:433–436.
  • SwopeWC, AndersenHC, BerensPH, WilsonKR. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–649.
  • LindemannFA. The calculation of molecular vibration frequencies. Z Phys. 1910;11:609–612.
  • HooverWG, RossM, JohnsonKW. Soft-sphere equation of state. J Chem Phys. 1970;52:4931–4941.
  • MakovG, YahelE. Liquid–liquid phase transformations and the shape of the melting curve. J Chem Phys. 2011;134:204507.
  • JaglaEA. Liquid–liquid equilibrium for monodisperse spherical particles. Phys Rev E. 2001;63:061501.
  • GiancarloF, GianpietroM, AnnaS, BuldyrevSV, EugeneSH. Generic mechanism for generating a liquid–liquid phase transition. Nature. 2001;409:692–695.
  • OliveiradeAB, NetzPA, CollaT, BarbosaMC. Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential. J Chem Phys. 2006;124:084505.
  • OliveiradeAB, NetzPA, CollaT, BarbosaMC. Structural anomalies for a three dimensional isotropic core-softened potential. J Chem Phys. 2006;125:124503.
  • FranzeseG. Differences between discontinuous and continuous soft-core attra ctive potentials: the appearance of density anomaly. J Mol Liq. 2007;136:267–273.
  • XuL, GiovambattistaN, BuldyrevSV, DebenedettiPG, StanleyHE. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model. J Chem Phys. 2011;134:064507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.