355
Views
19
CrossRef citations to date
0
Altmetric
Articles

Application of the interface potential approach to calculate the wetting properties of a water model system

&
Pages 1143-1152 | Received 05 Apr 2013, Accepted 14 Jun 2013, Published online: 11 Sep 2013

REFERENCES

  • SrivastavaP, ChapmanWG, LaibinisPE. Odd–even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane: a molecular dynamics simulation study. Langmuir. 2005;21:12171–12178.
  • YangC, TartaglinoU, PerssonBN. Influence of surface roughness on superhydrophobicity. Phys Rev Lett. 2006;97:116103.
  • BresmeF, QuirkeN. Computer simulation studies of liquid lenses at a liquid–liquid interface. J Chem Phys. 2000;112:5985–5990.
  • MaruyamaS, KurashigeT, MatsumotoS, YamaguchiY, KimuraT. Liquid droplet in contact with a solid surface. Microscale Thermophys Eng. 1998;2:49–62.
  • NijmeijerMJP, BruinC, BakkerAF, van LeeuwenJMJ. A visual measurement of contact angles in a molecular-dynamics simulation. Physica A. 1989;160:166–180.
  • SavilleG. Computer simulation of the liquid–solid–vapour contact angle. J Chem Soc. Faraday Trans 2. 1977;73:1122–1132.
  • VoronovRS, PapavassiliouDV, LeeLL. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J Chem Phys. 2006;124:204701.
  • HirviJT, PakkanenTA. Molecular dynamics simulations of water droplets on polymer surfaces. J Chem Phys. 2006;125:144712.
  • WerderT, WaltherJH, JaffeRL, HaliciogluT, KoumoutsakosP. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B. 2003;107:1345–1352.
  • MacDowellLG, MullerM, BinderK. How do droplets on a surface depend on the system size?Colloid Surf A: Physicochem Eng Asp. 2002;206:277–291.
  • IngebrigtsenT, ToxvaerdS. Contact angles of Lennard-Jones liquids and droplets on planar surfaces. J Phys Chem C. 2007;111:8518–8523.
  • HongSD, HaMY, BalachandarS. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation. J Colloid Interface Sci. 2009;339:187–195.
  • ShiB, DhirVK. Molecular dynamics simulation of the contact angle of liquids on solid surfaces. J Chem Phys. 2009;130:034705.
  • ArgyrisD, HoTA, ColeDR, StrioloA. Molecular dynamics studies of interfacial water at the alumina surface. J Phys Chem C. 2011;115:2038–2046.
  • ArgyrisD, HoTA, ColeDR, StrioloA, PapavassiliouDV, LeeLL. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study. Mol Simul. 2011;37:172–195.
  • GiovambattistaN, DebenedettiPG, RosskyPJ. Enhanced surface hydrophobicity by coupling of surface polarity and topography. PNAS. 2009;106:15181–15185.
  • GodawatR, JamadagniSN, GardeS. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. PNAS. 2009;106:15119–15124.
  • TaherianF, MarconV, van der VegtNF, LeroyF. What is the contact angle of water on graphene?Langmuir. 2013;29:1457–1465.
  • LeroyF, Müller-PlatheF. Solid–liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method. J Chem Phys. 2010;133:044110.
  • DietrichS. Wetting phenomena. In: DombJ, LebowitzL, editors. Phase transitions and critical phenomena. London: Academic Press; 1988. p. 12.
  • IndekeuJO. Line tension at wetting. Int J Mod Phys B. 1994;8:309–345.
  • EvansR. Microscopic theories of simple fluids and their interfaces. In: CharvolinJ, JoannyJ-F, Zinn-JustinJ, editors. Liquids at interfaces. Amsterdam: Elsevier; 1990.
  • de GennesPG. Wetting: statics and dynamics. Rev Mod Phys. 1985;57:827–863.
  • GrzelakEM, ErringtonJR. Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation. J Chem Phys. 2008;128:014710.
  • GrzelakEM, ErringtonJR. Calculation of interfacial properties via free-energy-based molecular simulation: the influence of system size. J Chem Phys. 2010;132:224702.
  • MacDowellLG, MüllerM. Adsorption of polymers on a brush: tuning the order of the wetting phase transition. J Chem Phys. 2006;124:084907–084913.
  • RaneKS, KumarV, ErringtonJR. Monte Carlo simulation methods for computing the wetting and drying properties of model systems. J Chem Phys. 2011;135:234102.
  • GrzelakEM, ErringtonJR. Nanoscale limit to the applicability of Wenzel's equation. Langmuir. 2010;26:13297–13304.
  • GrzelakEM, ErringtonJR, ShenVK. Molecular simulation study of anisotropic wetting. Langmuir. 2010;26:8274–8281.
  • KumarV, SridharS, ErringtonJR. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces. J Chem Phys. 2011;135:184702.
  • ErringtonJR. Prewetting transitions for a model argon on solid carbon dioxide system. Langmuir. 2004;20:3798–3804.
  • ErringtonJR, WilbertDW. Prewetting boundary tensions from Monte Carlo simulation. Phys Rev Lett. 2005;95:226107.
  • SellersMS, ErringtonJR. Influence of substrate strength on wetting behavior. J Phys Chem C. 2008;112:12905–12913.
  • BerendsenHJC, GrigeraJR, StraatsmaTP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • ErringtonJR, KofkeDA. Calculation of surface tension via area sampling. J Chem Phys. 2007;127:174709.
  • RaneKS, MuraliS, ErringtonJR. Monte Carlo simulation methods for computing liquid–vapor saturation properties of model systems. J Chem Theory Comput. 2013;9:2552–2566.
  • FitzgeraldM, PicardRR, SilverRN. Canonical transition probabilities for adaptive Metropolis stimulation. Europhys Lett. 1999;46:282–287.
  • FitzgeraldM, PicardRR, SilverRN. Monte Carlo transition dynamics and variance reduction. J Stat Phys. 2000;98:321–345.
  • WangF, LandauDP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053.
  • WangF, LandauDP. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101.
  • LyubartsevAP, MartsinovskiA, ShevkunovS, Vorontsov-VelyaminovP. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys. 1992;96:1776–1783.
  • LevittM, HirshbergM, SharonR, LaidigKE, DaggettV. Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution. J Phys Chem B. 1997;101:5051–5061.
  • FennellCJ, GezelterJD. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J Chem Phys. 2006;124:234104.
  • ToxvaerdS, DyreJC. Communication: shifted forces in molecular dynamics. J Chem Phys. 2011;134:081102.
  • HansenJS, SchrøderTB, DyreJC. Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. J Phys Chem B. 2012;116:5738–5743.
  • YehI-C, BerkowitzML. Ewald summation for systems with slab geometry. J Chem Phys. 1999;111:3155–3162.
  • ErringtonJR. Direct calculation of liquid–vapor phase equilibria from transition matrix Monte Carlo simulation. J Chem Phys. 2003;118:9915–9925.
  • FerrenbergAM, SwendsenRH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988;61:2635–2638.
  • NIST Chemistry WebBook [Internet]. Available from: http://webbook.nist.gov/chemistry/.
  • AlejandreJ, Lynden-BellRM. Phase diagrams and surface properties of modified water models. Mol Phys. 2007;105:3029–3033.
  • VegaC, AbascalJLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys. 2011;13:19663.
  • MacDowellLG, ErringtonJR, ShenVK. Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. J Chem Phys. 2006;125:034705.
  • GodawatR, JamadagniSN, ErringtonJR, GardeS. Structure, stability, and rupture of free and supported liquid films and assemblies in molecular simulations. Ind Eng Chem Res. 2008;47:3582–3590.
  • KogaK, IndekeuJO, WidomB. Infinite-order transitions in density-functional models of wetting. Phys Rev Lett. 2010;104:036101.
  • KogaK, WidomB. Mean-field density-functional model of a second-order wetting transition. J Chem Phys. 2008;128:114716.
  • VegaC, de MiguelE. Surface tension of the most popular models of water by using the test-area simulation method. J Chem Phys. 2007;126:154707.
  • ChenF, SmithPE. Simulated surface tensions of common water models. J Chem Phys. 2007;126:221101.
  • MittalJ, HummerG. Interfacial thermodynamics of confined water near molecularly rough surfaces. Faraday Discuss. 2010;146:341–352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.