145
Views
2
CrossRef citations to date
0
Altmetric
Articles

Does there exist an intrinsic relationship between the flexibility and self-assembly of pepfactants?

, , , , &
Pages 423-430 | Received 05 May 2013, Accepted 17 Jun 2013, Published online: 22 Jul 2013

REFERENCES

  • von MaltzahnG, VautheyS, SantosoS, ZhangS. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir. 2003;19:4332–4337.
  • ZhaoXB, PanF, PerumalS, XuH, LuJR, WebsterJRP. Interfacial assembly of cationic peptide surfactants. Soft Matter. 2009;5: 1630–1638.
  • ZhangS, LockshinC, HerbertA, WinterE, RichA. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J. 1992;11:3787–3796.
  • ZhaoX, PanF, XuH, YaseenM, ShanH, HauserCAE, ZhangS, LuJR. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev. 2010;39:3480–3498.
  • DexterAF, MiddelbergAPJ. Peptides as functional surfactants. Ind Eng Chem Res. 2008;47:6391–6398.
  • FungSY, KeyesC, DuhamelJ, ChenP. Concentration effect on the aggregation of a self-assembling oligopeptide. Biophys J. 2003; 85:537–548.
  • ZhangS, GelainF, ZhaoX. Designer self-assembling peptide nanofiber scaffolds for 3-D issue cell cultures. Sem Cancer Biol. 2005;15:413–420.
  • KoutsopoulosS, KaiserL, ErikssonaHM, ZhangS. Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev. 2012;41:1721–1728.
  • Ellis-BehnkeR, LiangYX, YouSW, TayD, ZhangS, SoKF, SchneiderG. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA. 2006;103:5054–5059.
  • TianF, WuJ, HuangN, GuoT, MaoC. The critical aggregation concentration of peptide surfactants is predictable from dynamic hydrophobic property. SAR QSAR Environ Res. 2013;24:89–101.
  • DysonHJ, WrightPE. Peptide conformation and protein folding. Curr Opin Struct Biol. 1993;3:60–65.
  • ZhouP, WangC, RenY, YangC, TianF. Computational peptidology: a new and promising approach to therapeutic peptide design. Curr Med Chem. 2013;20:1985–1996.
  • KimYW, GrossmannTN, VerdineGL. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc. 2011;6:761–771.
  • DaviesJS. The cyclization of peptides and depsipeptides. J Peptide Sci. 2003;9:471–501.
  • LamaD, SankararamakrishnanR. Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-XL. J Comput Aided Mol Des. 2011;25:413–426.
  • ZhaoX, NagaiY, ReevesPJ, KileyP, KhoranaHG, ZhangS. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc Natl Acad Sci USA. 2006; 103:17707–17712.
  • WangX, CorinK, BaaskeP, WienkenCJ, Jerabek-WillemsenM, DuhrS, BraunD, ZhangS. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci USA. 2011;108:9049–9054.
  • ChenP. Self-assembly of ionic-complementary peptides: a physicochemical viewpoint. Colloids Surf A. 2005;261:19–24.
  • KhoeU, YangY, ZhangS. Synergistic effect and hierarchical nanostructure formation in mixing two designer lipid-like peptide surfactants Ac-A6D-OH and Ac-A6K-NH2. Macromol Biosci. 2008;8:1060–1067.
  • KileyP, ZhaoX, VaughnM, BaldoMA, BruceBD, ZhangS. Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time. PLoS Biol. 2005;3:e230.
  • YaghmurA, LaggnerP, ZhangS, RappoltM. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS ONE. 2007;2:e479.
  • KhoeU, YangY, ZhangS. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir. 2009;25:4111–4114.
  • PanF, ZhaoXB, PerumalS, WaighTA, LuJR, WebsterJRP. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants. Langmuir. 2010;26:5690–5696.
  • NagaiA, NagaiY, QuH, ZhangS. Dynamic behaviors of lipid-like self-assembling peptide A6D and A6K nanotubes. J Nanosci Nanotechnol. 2007;7:1–7.
  • YangS, ZhangS. Self-assembling behavior of designer lipid-like peptides. Supramol Chem. 2006;18:389–396.
  • MatsumotoK, VaughnM, BruceBD, KoutsopoulosS, ZhangS. Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J Phys Chem B. 2009;113:75–83.
  • van HellAJ, CostaCICA, FleschFM, SutterM, JiskootW, CrommelinDJA, HenninkWE, MastrobattistaE. Self-assembly of recombinant amphiphilic oligopeptides into vesicles. Biomacromolecules. 2007;8:2753–2761.
  • van HellAJ, KlymchenkoA, BurgersPP, MoretEE, JiskootW, HenninkWE, CrommelinDJA, MastrobattistaE. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles. J Phys Chem B. 2010;114:11046–11052.
  • BermanHM, WestbrookJ, FengZ, GillilandG, BhatTN, WeissigH, ShindyalovIN, BournePE. The protein data bank. Nucl Acids Res. 2000;28:235–242.
  • MeirovitchH, MeirovitchE, LeeJ. New theoretical methodology for elucidating the solution structure of peptides from NMR data. 1. The relative contribution of low-energy microstates to the partition function. J Phys Chem. 1995;99:4847–4854.
  • YangLW, EyalE, ChennubhotlaC, JeeJG, GronenbornAM, BaharI. Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure. 2007;15:741–749.
  • MaupetitJ, DerreumauxP, TufferyP. PEP-FOLD: an online resource for de novo peptide structure prediction. Nucl Acids Res. 2009;37:W498–W503.
  • JorgensenWL, MaxwellDS, Tirado-RivesJ. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • TianF, YangL, LvF, YangQ, ZhouP. In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure–activity relationship approach. Amino Acids. 2009;36:535–554.
  • GolbraikhA, TropshaA. Beware of q2! J Mol Graph Model. 2002;20:269–276.
  • XuQS, LiangYZ. Monte Carlo cross validation. Chemometr Intell Lab Syst. 2001;56:1–11.
  • ZhouP, TianF, LvF, ShangZ. Comprehensive comparison of eight statistical modeling methods used in quantitative structure–retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome. J Chromatogr A. 2009;1216:3107–3116.
  • TianF, LvY, YangL. Structure-based prediction of protein–protein binding affinity with consideration of allosteric effect. Amino Acids. 2012;43:531–543.
  • ZhouP, TianF, ChenX, ShangZ. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes. Biopolymers. 2008;90:792–802.
  • ZhouP, ChenX, WuY, ShangZ. Gaussian process: an alternative approach for QSAM modeling of peptides. Amino Acids. 2010;38:199–212.
  • van der SpoelD, LindahlE, HessB, GroenhofG, MarkAE, BerendsenHJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718.
  • DauraX, MarkAE, van GunsterenWF. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. J Comput Chem. 1998;19:535–547.
  • ToukanK, RahmanA. Molecular-dynamics study of atomic motions in water. Phys Rev B. 1985;31:2643–2648.
  • BerendsenHJC, PostmaJPM, van GunsterenWF, DinolaA, HaakJR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • MiyamotoS, KollmanPA. SETTLE: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem. 1992;13:952–962.
  • HessB, BekkerH, BerendsenHJC, FraijeJGE. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.