15,923
Views
302
CrossRef citations to date
0
Altmetric
Articles

On the inner workings of Monte Carlo codes

, &
Pages 1253-1292 | Received 05 Apr 2013, Accepted 18 Jun 2013, Published online: 02 Oct 2013

REFERENCES

  • AllenMP, TildesleyDJ. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • RapaportDC. The art of molecular dynamics simulation. 2nd ed.Cambridge: Cambridge University Press; 2004.
  • FrenkelD, SmitB. Understanding molecular simulation. 2nd ed.London: Academic Press; 2002.
  • TuckermanM. Statistical mechanics: theory and molecular simulations. New York: Oxford University Press; 2010.
  • TheodorouDN. Progress and outlook in Monte Carlo simulations. Ind Eng Chem Res. 2010;49(7):3047–3058.
  • VitalisA, PappuRV. Methods for Monte Carlo simulations of biomacromolecules. Ann Rep Comput Chem. 2009;5(9):49–76.
  • HillTLJ. On steric effects. J Chem Phys. 1946;14(7):465.
  • WestheimerFH, MayerJE. The theory of the racemization of optically active derivatives of diphenyl. J Chem Phys. 1946;14(12):733–738.
  • WestheimerFH. Calculation of the magnitud of steric effects. In: NewmanMS, editor. Steric effects in organic chemistry. New York: John Wiley & Sons; 1956.
  • WalesDJ. Energy landscapes. University Press, Cambridge; 2003.
  • DinurU, HaglerAT. New approaches to empirical force fields. In: LipkowitzKB, BoydDB, editors. Reviews in computational chemistry. Vol. 2. New Jersey: Wiley Online Library; 1991. p. 99–164.
  • HillJR, FreemanCM, SubramanianL. Use of force fields in materials modeling. In: LipkowitzKB, BoydDB, editors. Reviews in computational chemistry. Vol. 16. New Jersey: Wiley Online Library; 2000. p. 141–216.
  • BowenJP, AllingerNL. Molecular mechanics: the art and science of parameterization. In: LipkowitzKB, BoydDB, editors. Reviews in computational chemistry. Vol. 2. New Jersey: Wiley Online Library; 1991. p. 81–97.
  • TafipolskyM, SchmidR. Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach. J Phys Chem B. 2009;113(5):1341–1352.
  • JudsonR. Genetic algorithms and their use in chemistry. In: LipkowitzKB, BoydDB, editors. Reviews in computational chemistry. Vol. 10. New Jersey: Wiley Online Library; 1997. p. 1–73.
  • MomanyFA. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. J Phys Chem. 1978;82(5):592–601.
  • CoxSR, WilliamsDE. Representation of the molecular electrostatic potential by a net atomic charge model. J Comput Chem. 1981;2(3):304–323.
  • FranclMM, ChirlianLE. The pluses and minuses of mapping atomic charges to electrostatic potentials. In: LipkowitzKB, BoydDB, editors. Reviews in computational chemistry. Vol. 14. New Jersey: Wiley Online Library; 2000. p. 1–31.
  • CampanaC, MussardB, WooTK. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J Chem Theory Comput. 2009;5(10):2866–2878.
  • WatanabeT, ManzTA, ShollDS. Accurate treatment of electrostatics during molecular adsorption in nanoporous crystals without assigning point charges to framework atoms. J Phys Chem C. 2011;115(11):4824–4836.
  • GasteigerJ, MarsiliM. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228.
  • RappeAK, GoddardWA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95(8):3358–3363.
  • WilmerCE, SnurrRQ. Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem Eng J. 2011;171(3):775–781.
  • WilmerCE, KimKC, SnurrRQ. An extended charge equilibration method. J Phys Chem Lett. 2012;3(17):2506–2511.
  • DubbeldamD, CaleroS, VlugtTJH, KrishnaR, MaesenTLM, BeerdsenE, SmitB. Force field parametrization through fitting on inflection points in isotherms. Phys Rev Lett. 2004;93:088302-1.
  • DubbeldamD, CaleroS, VlugtTJH, KrishnaR, MaesenTLM, SmitB. United atom force field for alkanes in nanoporous materials. J Phys Chem B. 2004;108(33):12301–12313.
  • CornellWD, CieplakP, BaylyCI, GouldIR, MerzKMJr, FergusonDM, SpellmeyerDC, FoxT, CaldwellJW, KollmanPA. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc. 1992;117(3):5179–5197.
  • PearlmanDA, CaseDA, CaldwellJC, SeibelGL, SinghUC, WeinerP, KollmanPA. AMBER 4.0. San Francisco, CA: University of California Press; 1991.
  • WeinerPK, KollmanPA. AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comp Chem. 1981;2(3):287–303.
  • WeinerSJ, KollmanPA, CaseDA, SinghUC, GhioC, AlagonaG, ProfetaSJr, WeinerPK. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc. 1984;106(3):765–784.
  • WeinerSJ, KollmanPA, NguyenDT, CaseDA. An all atom force field for simulations of proteins and nucleic acids. J Comp Chem. 1986;7(2):230–252.
  • JorgensenWL, MaduraJD, SwensonCJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc. 1984;106(22):6638–6646.
  • JorgensenWL, SwensonCJ. Optimized intermolecular potential functions for amides and peptides structure and properties of liquid amides. J Am Chem Soc. 1985;107(3):569–578.
  • JorgensenWL. Intermolecular potential functions and Monte Carlo simulations for liquid sulfur compounds. J Phys Chem. 1986;90(23):6379–6388.
  • JorgensenWL. Optimized intermolecular potential functions for liquid alcohols. J Phys Chem. 1986;90(7):1276–1284.
  • DammW, FronteraA, Tirado-RivesJ, JorgensenWL. OPLS all-atom force field for carbohydrates. J Comp Chem. 1997;18(16):1955–1970.
  • JorgensenWL, MaxwellDS, Tirado-RivesJ. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118(45):11225–11236.
  • JorgensenWL, Tirado-RivesJ. The OPLS potential functions for proteins. Energy minimization for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110(6):1657–1666.
  • KaminskiG, DuffyEM, MatsuiT, JorgensenWL. Free-energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem. 1994;98(49):13077–13082.
  • MacKerellAD, BashfordD, BellottM, DunbrackRL, EvanseckJD, FieldMJ, FischerS, GaoJ, GuoH, HaS, Joseph-McCarthyD, KuchnirL, KuczeraK, LauFTK, MattosC, MichnickS, NgoT, NguyenDT, ProdhomB, ReiherWE, RouxB, SchlenkrichM, SmithJC, StoteR, StraubJ, WatanabeM, Wiorkiewicz-KuczeraJ, YinD, KarplusM. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102(18):3586–3617.
  • MomanyFA, RoneR. Validation of the general purpose QUANTA 3.2/CHARMM force field. J Comp Chem. 1992;13(7):888–900.
  • PavelitesJJ, GaoJ, BashPA, MackerellADJr. A molecular mechanics force field for NAD+, NADH, and the pyrophosphate groups of nucleotides. J Comp Chem. 1997;18(2):221–239.
  • HermansJ, BerendsenHJC, van GunsterenWF, PostmaJPM. A consistent empirical potential for water-protein interactions. Biopolymers. 1984;23(8):1513–1518.
  • OttK-H, MeyerB. Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations. J Comp Chem. 1996;17(8):1068–1084.
  • van GunsterenWF, DauraX, MarkAE. The GROMOS force field. ECC. 1997;17.
  • Dauber-OsguthorpeP, RobertsVA, OsguthorpeDJ, WolffJ, GenestM, HaglerAT. Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Prot: Struct Funct Genet. 1988;4(31–47):31–47.
  • HaglerAT, EwigCS. On the use of quantum energy surfaces in the derivation of molecular force fields. Comp Phys Commun. 1994;84(1–3):131–155.
  • HwangM-J, StockfischTP, HaglerAT. Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc. 1994;116(6):195–231.
  • MapleJR, HwangM-J, StockfischTP, HaglerAT. Derivation of class II force fields. 3. Characterization of a quantum force field for the alkanes. Israel J Chem. 1994;34(2):195–231.
  • AllingerNL. Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc. 1977;99(25):8127–8134.
  • AllingerNL, KokR, ImamMR. Hydrogen bonding in MM2. J Comp Chem. 1988;9(6):591–595.
  • LiiJ-H, GallionS, BenderC, WikstromH, AllingerNL, FlurchickKM, TeeterMM. Molecular mechanics (MM2) calculations on peptides and on the protein crambin using the cyber 205. J Comp Chem. 1989;10(4):503–513.
  • LiiJ-H, AllingerNL. The MM3 force field for amides, polypeptides and proteins. J Comp Chem. 1991;12(2):186–199.
  • LiiJ-H, AllingerNL. Directional hydrogen bonding in the MM3 force field. II. J Comp Chem. 1998;19(9):1001–1016.
  • AllingerNL, ChenK, LiiJ-H. An improved force field (MM4) for saturated hydrocarbons. J Comp Chem. 1996;17(5–6):642–668.
  • AllingerNL, ChenK, KatzenellenbogenJA, WilsonSR, AnsteadGM. Hyperconjugative effects on carbon-carbon bond lengths in molecular mechanics (MM4). J Comp Chem. 1996;17(5–6):747–755.
  • AllingerNL, FanY. Molecular mechanics studies (MM4) of sulfides and mercaptans. J Comp Chem. 1997;18(15):1827–1847.
  • NevensN, ChenK, AllingerNL. Molecular mechanics (MM4) calculations on alkenes. J Comp Chem. 1996;17(5–6):669–694.
  • NevensN, LiiJ-H, AllingerNL. Molecular mechanics (MM4) calculations on conjugated hydrocarbons. J Comp Chem. 1996;17(5–6):695–729.
  • NevensN, AllingerNL. Molecular mechanics (MM4) vibrational frequency calculations for alkenes an conjugated hydrocarbons. J Comp Chem. 1996;17(5–6):730–746.
  • HalgrenTA. The representation of the van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc. 1992;114(20):7827–7843.
  • HalgrenTA. Merck molecular force field. I. Basis, form, scope, parameterization and performance of MMFF94. J Comp Chem. 1996;17(5–6):490–519.
  • HalgrenTA. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comp Chem. 1996;17(5–6):520–552.
  • HalgrenTA. Merck molecular force field. III. Molecular geometrics and vibrational frequencies for MMFF94. J Comp Chem. 1996;17(5–6):553–586.
  • HalgrenTA, NachbarRB. Merck molecular force field. IV. Conformational energies and geometries. J Comp Chem. 1996;17(5–6):587–615.
  • HalgrenTA, NachbarRB. Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comp Chem. 1996;17(5–6):616–641.
  • MayoSL, OlafsonBD, GoddardWA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909.
  • SunH, RenP, FriedJR. The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci. 1998;8(1–2):229–246.
  • RappéAK, CasewitCJ, ColwellKS, GoddardWA, SkiffWMJ. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114(25):10024–10035.
  • MartinMG, SiepmannJI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B. 1998;102(14):2569–2577.
  • MartinMG, SiepmannJI. Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J Phys Chem B. 1999;103(21):4508–4517.
  • RaiN, SiepmannJI. Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. J Phys Chem B. 2007;111(36):10790–10799.
  • LubnaN, KamathG, PotoffJJ, RaiN, SiepmannJI. Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene. J Phys Chem B. 2005;109(50):24100–24107.
  • StubbsJM, PotoffJJ, SiepmannJI. Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B. 2004;108(45):17596–17605.
  • WickCD, StubbsJM, RaiN, SiepmannJI. Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. J Phys Chem B. 2005;109(40):18974–18982.
  • ChenB, SiepmannJI. Transferable potentials for phase equilibria. 3. Explicit-hydrogen description of normal alkanes. J Phys Chem B. 1999;103(25):5370–5379.
  • ToxvaerdS. Molecular-dynamics calculation of the equation of state of alkanes. J Chem Phys. 1990;93(6):4290–4295.
  • UngererP, BeauvaisC, DelhommelleJ, BoutinA, RousseauB, FuchsAH. Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys. 2000;112(12):5499–5510.
  • van WestenT, VlugtTJH, GrossJ. Determining force field parameters using a physically based equation of state. J Phys Chem B. 2011;115(24):7872–7880.
  • GrossJ, SadowskiG. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40(4):1244–1260.
  • TrachenkoK, TodorovIT, SmithW, DoveMT. DLPOLY: 3 new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918.
  • Ponder JW. TINKER software tools for molecular design. http://dasher.wustl.edu/tinker.
  • FieldMJ, AlbeM, BretC, Proust-De MartinF, ThomasA. The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem. 2000;21(12):1088–1100.
  • FieldMJ. A practical introduction to the simulation of molecular systems. New York: Cambridge University Press; 1999.
  • GaleJD. GULP – a computer program for the symmetry adapted simulation of solids. JCS Faraday Trans. 1997;93(629)
  • Accelrys. © 2001-2007 Accelrys Software Inc., Materials Studio. http://accelrys.com/products/materials-studio/polymers-and-classical-simulation-software.html.
  • Accelrys. ; 2013.
  • PlimptonS. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • van der SpoelD, BerendsenHJC, van DrunenR. GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun. 1995;91:43–56.
  • LindahlBHE, van der SpoelD. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod. 2001;7:306–317.
  • JorgensenWL. Encyclopedia of computational chemistry. Vol. 5. New York: P. v.R. Schleyer,Wiley; 1998.
  • Yale University W.L. Jorgensen Research Group. MCPRO. http://www.cemcomco.com/BOSS_and_MCPRO_Distribution125.html.
  • BucherHF, SchultzAJ, KofkeDA. An eclipse-based environment for molecular simulation. Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology eXchange, eclipse 2005. New York, NY: ACM; 2005. p. 130–134.
  • Martin MG. Towhee. http://towhee.sourceforge.net.
  • MedeA Gibbs. http://www.materialsdesign.com/medea/medea-gibbs-thermodynamics-fluids-adsorption.
  • Vlugt TJH, Smit B. The BIGMAC: a configurational bias Monte Carlo program. http://molsim.chem.uva.nl/bigmac/, 1998.
  • Vlugt TJH. Adsorption and diffusion in zeolites: a computational study [PhD thesis]. University of Amsterdam, Amsterdam ; 2000.
  • Cassandra. http://www3.nd.edu/ ed/research/cassandra.html.
  • GuptaA, ChempathS, SanbornMJ, ClarkLA, SnurrRQ. Object-oriented programming paradigms for molecular modeling. Mol Sim. 2003;29:29–46.
  • Sarkisov L, Duren T, Chempath S, Snurr RQ, 2013.
  • Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA 1.0: molecular software package for adsorption and diffusion in flexible nanoporous materials, 2013.
  • HeffelfingerGS. Parallel atomistic simulations. Comp Phys Commun. 2000;128(1–2):219–237.
  • UhlherrA. Parallel Monte Carlo simulations by asynchronous domain decomposition. Comp Phys Commun. 2003;155(1):31–41.
  • EsselinkK, LoyensLDJC, SmitB. Parallel Monte Carlo simulations. Phys Rev E. 1995;51(2):1560–1568.
  • LoyensLDJC, SmitB, EsselinkK. Parallel Gibbs-ensemble simulations. Mol Phys. 1995;86(2):171–183.
  • VlugtTJH. Efficiency of parallel CBMC simulations. Mol Simul. 1999;23(1):63–78.
  • AlbertyRA. Legendre transforms in chemical thermodynamics. J Chem Thermo. 1997;29(5):501–516.
  • ZemanskyMW, DittmanRH. Heat and thermodynamics. 7th ed.New York: McGraw-Hill; 1997.
  • RayJ. Ensembles and computer simulation calculation of response functions. In: YipS, editor. Handbook of materials modeling, chapter 12. Netherlands: Springer; 2005. p. 729–743.
  • FayPJ, RayJR. Monte-Carlo simulations in the isoenthalpic-isotension-isobaric ensemble. Phys Rev A. 1992;46(8):4645–4649.
  • RayJR, WolfRJ. Monte-Carlo simulations at constant chemical-potential and pressure. J Chem Phys. 1993;98(3):2263–2267.
  • BornM, von KarmanTh. Uber schwingungen in raumgittern. Physik Z. 1912;13:297–309.
  • SiepmannIJ. Monte Carlo methods for simulating phase equilibria of complex fluids. In: FergusonDM, SiepmannJI, TruhlarDG, editors. Advances in chemical physics: Monte Carlo methods in chemical physics. Vol. 105. New York: John Wiley & Sons; 1999. p. 433–460.
  • HillTL. Thermodynamics of small systems. New York: W.A. Benjamin, Inc.; 1963.
  • SchnellSK, LiuX, SimonJM, BardowA, BedeauxD, VlugtTJH, KjelstrupS. Calculating thermodynamic properties from fluctuations at small scales. J Phys Chem B. 2011;115(37):10911–10918.
  • SchnellSK, VlugtTJH, SimonJM, BedeauxB, KjelstrupS. Thermodynamics of small systems embedded in a reservoir: a detailed analysis of finite size effects. Mol Phys. 2012;110(11–12):1069–1079.
  • KrishnaR, van BatenJM. Comment on comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. Langmuir. 2010;26(4):2975–2978.
  • KimJ, MartinRL, RübelO, HaranczykM, SmitB. High-throughput characterization of porous materials using graphics processing units. J Chem Theory Comput. 2012;8(5):1684–1693.
  • SchnabelT, VrabecJ, HasseH. Unlike Lennard-Jones parameters for vapor-liquid equilibria. J Mol Liq. 2007;135(1–3):170–178.
  • AdamsDJ, AdamsEM, HillsGJ. Computer simulation of polar liquids. Mol Phys. 1979;38(2):387–400.
  • AndreaTA, SwopeWC, AndersenHC. The role of long ranged forces in determining the structure and properties of liquid water. J Chem Phys. 1983;79(9):4576–4584.
  • SteinbachPJ, BrooksBR. New spherical-cutoff methods for lone-range forces in macromolecular simulation. J Comput Chem. 1994;15(7):667–683.
  • MacedoniaMD, MaginnEJ. A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models. Mol Phys. 1999;96:1375–1390.
  • EwaldPP. Die berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253–287.
  • de LeeuwSW, PerramJW, SmithER. Simulation of electrostatic systems in periodic boundary-conditions. 1. Lattice sums and dielectric-constants. P Roy Soc Lond A Mat. 1980;373(1752):27–56.
  • AdamsDJ. On the use of the Ewald summation in computer-simulation. J Chem Phys. 1983;78(5):2585–2590.
  • NymandTW, LinseP. Ewald summation and reaction field methods for potentials with atomic charges, dipoles, and polarizabilities. J Chem Phys. 2000;112(14):6152–6160.
  • AguadoA, MaddenPA. Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J Chem Phys. 2003;119(14):7471–7483.
  • BoguszS, CheathamTE, BrooksBR. Removal of pressure and free energy artifacts in charged periodic systems via net charge corrections to the Ewald potential. J Chem Phys. 1998;108(17):7070–7084.
  • VlugtTJH, Garcia-PerezE, DubbeldamD, BanS, CaleroS. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions. J Chem Theory Comput. 2008;4(7):1107–1118.
  • WolfD, KeblinskiP, PhillpotSR, EggebrechtJ. Exact method for the simulation of coulombic systems by spherically truncated, pairwise r( − 1) summation. J Chem Phys. 1999;110(17):8254–8282.
  • AgarwalBK, EisnerM. Statistical mechanics. 2nd ed.New Dehli: New Age International Ltd; 1998.
  • MatsumotoM, NishimuraT. Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comput Simul. 1998;8(1):3–30.
  • NishimuraT. Tables of 64-bit Mersenne twisters. ACM Trans Model Comput Simul. 2000;10:348–357.
  • MetropolisN, RosenbluthAW, RosenbluthMN, TellerAH, TellerE. Equations of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087–1092.
  • ValleauJP, WhittingtonSG. A guide to Monte Carlo for statistical mechanics. 1. Highways. In: BerneBJ, editor. Statistical mechanics A. modern theoretical chemistry. Vol. 5. New York: Plenum Press; 1977. p. 137–168.
  • McQuarrieDA. Statistical mechanics. Mill Valley, CA: University Science Books; 2000.
  • FrenkelD. Monte Carlo simulations. In: CatlowCRA, ParkerSC, AllenMP, editors. Computer modelling of fluids polymers and solids, chapter 4. Netherlands: Springer; 1988. p. 83–124.
  • FowlerRH. Statistical mechanics. The theory of the properties of matter in equilibrium. Cambridge: University Press; 1936.
  • FowlerRH, GuggenheimEA. Statistical mechanics. 2d ed. New York: Macmillian; 1939.
  • HillTR. An introduction to statistical thermodynamics. 2nd ed.New York: Dover Publications; 1968.
  • WoodWW. Monte Carlo calculations for hard disks in the isothermal-isobaric ensemble. J Chem Phys. 1968;48(1):415–434.
  • WoodWW. NpT ensemble Monte Carlo calculations for the hard disk fluid. J Chem Phys. 1970;52(2):729–741.
  • GuggenheimEA. Grand partition functions and so-called ‘thermodynamic probability’. J Chem Phys. 1939;7(2):103–107.
  • HansenJ-P, McDonaldIR. Theory of simple liquids. 3th ed.Amsterdam: Elsevier; 2006.
  • AttardP. On the density of volume states in the isobaric ensemble. J Chem Phys. 1995;103(22):9884–9885.
  • KoperGJM, ReissH. Length scale for the constant pressure ensemble: application to small systems and relation to Einstein fluctuation theory. J Phys Chem. 1996;100(1):422–432.
  • CortiDS, Soto-CampusG. Deriving the isothermal-isobaric ensemble: the requirement of a ‘shell’ molecule and applicability to small systems. J Chem Phys. 1998;108(19):7959–7966.
  • HanK-K, SonHS. On the isothermal-isobaric ensemble partition function. J Chem Phys. 2001;115(16):7793–7794.
  • PanagiotopoulosAZ. Direct determination of the phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys. 1987;61(4):813–826.
  • PanagiotopoulosAZ, QuirkeN, StapeltonNM, TildesleyDJ. Phase-equilibria by simulation in the Gibbs ensemble-alternative derivation, generalization and application to the mixture and membrane equilibria. Mol Phys. 1988;63(4):527–545.
  • PanagiotopoulosAZ. Gibbs ensemble techniques. In: RullLR, BausM, RyckaertJP, editors. Observation, prediction and simulation of phase transitions in complex fluids, volume NATO ASI Series C,460. Netherlands: Kluwer Academic; 1995. p. 463–501.
  • NicholsonD, ParsonageNG. Computer simulation and the statistical mechanics of adsorption. New York: Academic Press; 1988.
  • NormanGE, FilinovVS. Investigations of phase transitions by a Monte Carlo method. High Temp USSR. 1969;7(7):216–222.
  • AdamsDJ. Chemical potential of hard-sphere fluids by Monte Carlo methods. Mol Phys. 1974;28(5):1241–1252.
  • SmithJM, Van NessHC, AbbottMM. Introduction to chemical engineering thermodynamics. 7th ed.New York: Mcgraw-Hill; 2005.
  • VorosNG, TassiosDP. Vapour-liquid equilibria in nonpolar/weakly polar systems with different types of mixing rules. Fluid Phase Equilib. 1993;91(1):1–29.
  • WolfRJ, LeeMW, DavisRC, FayPJ, RayJR. Pressure-composition isotherms for palladium hydride. Phys Rev B. 1993;48(17):12415–12418.
  • BrennanJK, MaddenWG. Phase coexistence curves for off-lattice polymersolvent mixtures: Gibbs-ensemble simulations. Macromolecules. 2002;35(7):2827–2834.
  • BanaszakBJ, FallerR, de PabloJJ. Simulation of the effects of chain architecture on the sorption of ethylene in polyethylene. J Chem Phys. 2004;120(23):11304–11315.
  • ZangJ, NairS, ShollDS. Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations. J Chem Phys. 2011;134(18):184103.
  • RosenbluthMN, RosenbluthAW. Monte Carlo simulations of the average extension of molecular chains. J Chem Phys. 1955;23:356–359.
  • HarrisJ, RiceSA. A lattice model of a supported monolayer of amphiphile molecules: Monte Carlo simulations. J Chem Phys. 1988;88(2):1298–1307.
  • SiepmannJI. A method for the direct calculation of chemical-potentials for dense chain systems. Mol Phys. 1990;70(6):1145–1158.
  • SiepmannJI, FrenkelD. Configurational bias Monte-Carlo – A new sampling scheme for flexible chains. Mol Phys. 1992;75(1):59–70.
  • FrenkelD, MooijGCAM, SmitB. Novel scheme to study structural and thermal-properties of continuously deformable molecules. J Phys: Condens Matter. 1992;4(12):3053–3076.
  • de PabloJJ, SuterM, SuterUW. Simulation of polyethylene above and below the melting point. J Chem Phys. 1992;96(3):2395–2403.
  • LasoM, de PabloJJ, SuterUW. Simulation of phase-equilibria for chain molecules. J Phys: Condens Matter. 1992;97(4):2817–2819.
  • SiepmannJI, McDonaldIR. Monte-Carlo simulation of mixed monolayers. Mol Phys. 1992;75(2):255–259.
  • VlugtTJH, KrishnaR, SmitB. Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite. J Phys Chem B. 1999;103:1102–1118.
  • MartinMG, ThompsonAP. Industrial property prediction using Towhee and LAMMPS. Fluid Phase Equilib. 2004;217(1):105–110.
  • DeemMW, BaderJS. A Configurational Bias Monte Carlo method for linear and cyclic peptides. Mol Phys. 1996;87:1245–1260.
  • ChenZ, EscobedoFA. A configurational-bias approach for the simulation of linear and cyclic molecules. J Chem Phys. 2000;113:11382–11392.
  • WickCD, SiepmannJI. Self-adapting fixed-end-point configurational-bias Monte Carlo method for the regrowth of interior segments of chain molecules with strong intramolecular interactions. Macromolecules. 2000;33(19):7207–7218.
  • UhlherrA. Monte Carlo conformational sampling of the internal degrees of freedom of chain molecules. Macromolecules. 2000;33(4):1351–1360.
  • ShahJK, MaginnEJ. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. J Chem Phys. 2011;135(13):134121.
  • JakobtorweihenS, HansenN, KeilFJ. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene mathesis reaction system in various zeolites. J Chem Phys. 2006;125:224709/1–2247099.
  • VlugtTJH, MartinMG, SmitB, SiepmannJI, KrishnaR. Improving the efficiency of the configurational-bias Monte Carlo algorithm. Mol Phys. 1998;94(4):727–733.
  • SmitB, KaraborniS, SiepmannJI. Computer-simulations of vapor-liquid phase-equilibria of n-alkanes. J Chem Phys. 1995;102(5):2126–2140.
  • ShiW, MaginnEJ. Continuous fractional component Monte Carlo: an adaptive biasing method for open system atomistic simulations. J Chem Theory Comput. 2007;3(4):1451–1463.
  • ShiW, MaginnEJ. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move. J Comput Chem. 2008;29(15):2520–2530.
  • RoschTW, MaginnEJ. Reaction ensemble Monte Carlo simulation of complex molecular systems. J Chem Theory Comput. 2011;7(2):269–279.
  • JohnsonJK. Reactive canonical monte carlo. In: JohnsonDM, SiepmannJI, TruhlarDG, editors. Advances in chemical physics: Monte Carlo methods in chemical physics. Vol. 105. New York: John Wiley & Sons; 1999. p. 461–481.
  • TurnerCH, BrennanJK, LisalM, SmithWR, JohnsonJK, GubbinsKE. Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review. Mol Simul. 2008;34(2):119–146.
  • SmithWR, TriskaB. The reaction ensemble method for the computer simulation of chemical and phase equilibria. i. Theory and basic examples. J Chem Phys. 1994;100:3019.
  • JohnsonJK, PanagiotopoulosAZ, GubbinsKE. Reactive canonical Monte Carlo: a new simulation technique for reacting or associating fluids. Mol Phys. 1994;81(3):717–733.
  • HansenN, JakobtorweihenS, KeilFJ. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. J Chem Phys. 2005;122:164705.
  • LísalM, BrennanJK, SmithWR. Chemical reaction equilibrium in nanoporous materials: no dimerization reaction in carbon slit nanopores. J Chem Phys. 2006;124(6):064712.
  • TurnerCH, JohnsonJK, GubbinsKE. Effect of confinement on chemical reaction equilibria: the reactions 2NO(NO) and N+ 3H 2NH in carbon micropores. J Chem Phys. 1851;114(4):2001.
  • TurnerCH, PikunicJ, GubbinsKE. Influence of chemical and physical surface heterogeneity on chemical reaction equilibria in carbon micropores. Mol Phys. 2001;99(24):1991–2001.
  • LísalM, CosoliP, SmithWR, JainSK, GubbinsKE. Fluid phase equilibria molecular-level simulations of chemical reaction equilibrium for nitric oxide dimerization reaction in disordered nanoporous carbons. Fluid Phase Equilib. 2008;272:18–31.
  • LísalM, NezbedaI, SmithWR. The reaction ensemble method for the computer simulation of chemical and phase equilibria. ii. The Br+ Cl+ BrCl system. J Chem Phys. 1999;110(17):8597.
  • TurnerCH, BrennanJK, LísalM. Replica exchange for reactive Monte Carlo simulations. J Phys Chem C. 2007;111(43):15706–15715.
  • BrennanJK, LśalM, GubbinsKE, RiceBM. Reaction ensemble molecular dynamics: direct simulation of the dynamic equilibrium properties of chemically reacting mixtures. Phys Rev E. 2004;70(6):061103.
  • PanagiotopoulosAZ. Exact calculations of fluid-phase equilibria by Monte-Carlo simulation in a new statistical ensemble. Int J Thermophys. 1989;10(2):447–457.
  • de PabloJJ, PrausnitzJM. Phase equilbria for fluid mixtures from Monte-Carlo simulation. Fluid Phase Equilib. 1989;53(0):177–189.
  • MartinMG, SiepmannJI. Predicting multicomponent phase equilibria and free energies of transfer for alkanes by molecular simulation. J Am Chem Soc. 1997;119(38):8921–8924.
  • KofkeDA, GlandtED. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol Phys. 1988;64(6):1105–1131.
  • DoddLR, BooneTD, TheodorouDN. A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses. Mol Phys. 1993;78:961–996.
  • PantPVK, TheodorouDN. Variable connectivity method for the atomistic Monte Carlo simulation of polydisperse polymer melts. Macromolecules. 1995;28(21):7224–7234.
  • MavrantzasVG, BooneTD, ZervopoulouE, TheodorouDN. End-bridging Monte Carlo: a fast algorithm for atomistic simulation of condensed phases of long polymer chains. Macromolecules. 1999;32(15):5072–5096.
  • TheodorouDN. Variable-connectivity Monte Carlo algorithms for the atomistic simulation of long-chain polymer systems. In: NielabaP, MareschalM, CiccottiG, editors. Bridging time scales: molecular simulations for the next decade. Berlin: Springer-Verlag; 2002. p. 69–128.
  • DuaneS, KennedyAD, PendletonBJ, RowethD. Hybrid Monte Carlo. Phys Lett B. 1987;195:216–222.
  • ChempathS, ClarkLA, SnurrRQ. Two general methods for grand canonical ensemble simulation of molecules with internal flexibility. J Chem Phys. 2003;118(16):7635–7643.
  • FallerR, de PabloJJ. Constant pressure hybrid molecular dynamics-Monte Carlo simulations. J Chem Phys. 2002;116(1):55–59.
  • ShinodaW, ShigaM, MikamiM. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B. 2004;69:134103.
  • AkhmatskayaE, ReichS. GSHMC: an efficient method for molecular simulation. J Comput Phys. 2008;227(10):4934–4954.
  • van ErpTS, CaremansTP, DubbeldamD, Martin-CalvoA, CaleroS, MartensJA. Enantioselective adsorption in achiral zeolites. Angew Chem Int Ed. 2010;49(17):3010–3013.
  • van ErpTS, DubbeldamD, CaremansTP, CaleroS, MartensJA. Effective Monte Carlo scheme for multicomponent gas adsorption and enantioselectivity in nanoporous materials. J Phys Chem Lett. 2010;1(14):2154–2158.
  • UhlherrA, TheodorouDN. Accelerating molecular simulations by reversible mapping between local minima. J Chem Phys. 2006;125:084107.
  • SnurrRQ, BellAT, TheodorouDN. Prediction of adsorption of aromatic-hydrocarbons in silicalite from grand canonical Monte-Carlo simulations with biased insertions. J Phys Chem. 1993;97(51):13742–13752.
  • WallFT, MandelF. Macromolecular dimensions obtained by an efficient Monte Carlo method without sample attrition. J Chem Phys. 1975;63:4592–4595.
  • ChenB, SiepmannJI. Improving the efficiency of the aggregation-volume-bias Monte Carlo algorithm. J Phys Chem B. 2001;105(45):11275–11282.
  • ConstaS, WildingNB, FrenkelD, AlexandrowiczZ. Recoil growth: an efficient simulation method for multi-polymer systems. J Chem Phys. 1999;110(6):3220–3228.
  • ConstaS, VlugtTJH, Wichers HoethJ, SmitB, FrenkelD. Recoil growth algorithm for chain molecules with continuous interactions. Mol Phys. 1999;97(12):1243–1254.
  • McGreevyRL, PusztaiL. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul. 1988;1:359–367.
  • BruceAD, WildingNB, AcklandGJ. Free energy of crystalline solids: a lattice-switch Monte Carlo method. Phys Rev Lett. 1997;79(16):3002–3005.
  • WildingNB, BruceAD. Freezing by Monte Carlo phase switch. Phys Rev Lett. 2000;85:5138–5141.
  • BruceAD, WildingNB. Computational strategies for mapping equilibrium phase diagrams. Adv Chem Phys. 2002;127:1–64.
  • YoungWM, ElcockEW. Monte Carlo studies of vacancy migration in binary ordered alloys: I. Proc Phys Soc. 1966;89:735–746.
  • VoterAF. Introduction to the kinetic Monte Carlo method. Rad Effects Solids (NATO Sci Ser). 2007;235:1–23.
  • ChatterjeeA, VlachosDG. An overview of spatial microscopic and accelerated Kinetic Monte Carlo methods. J Comput Mater Design. 2007;14:253–308.
  • HoneycuttJD. A general simulation method for computing conformational properties of single polymer chains. Comput Theor Polym Sci. 1998;8(1–2):1–8.
  • WalesDJ, DoyeJPK. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem. 1997;101(28):5111–5116.
  • FernandezLA, Martin-MayorV, YllanesD. Tethered Monte Carlo: computing the effective potential without critical slowing down. Nucl Phys B. 2009;807:424–454.
  • ZhouR, BerneBJ. Smart walking: a new method for Boltzmann sampling of protein conformations. J Chem Phys. 1997;107:9185–9196.
  • SweatmanMB, QuirkeN. Simulating fluid-solid equilibrium with the Gibbs ensemble. Mol Simul. 2004;30(1):23–28.
  • SweatmanMB. Self-referential Monte Carlo method for calculating the free energy of crystalline solids. Phys Rev E. 2005;72:016711.
  • SweatmanMB. New techniques for simulating crystals. Mol Simul. 2009;35:897–909.
  • EscobedoFA, de PabloJJ. Monte-Carlo simulation of the chemical potential of polymers in an expanded ensemble. J Chem Phys. 1995;103(7):2703–2710.
  • EscobedoFA, de PabloJJ. Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J Chem Phys. 1996;105(10):4391–4394.
  • ZhangJ, KouSC, LiuJS. Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo. J Chem Phys. 2007;126:225101.
  • FrenkelD. Speed-up of Monte Carlo simulations by sampling of rejected states. Proc Natl Acad Sci USA. 2004;101(51):17571–17575.
  • FrenkelD. Waste-recyling Monte Carlo. Lecture Notes in Phys. 2006;703:127–137.
  • SwendsenRH, WangJS. Replica Monte Carlo simulation of spin glasses. Phys Rev Lett. 1986;57:2607–2609.
  • GeyerCJ. Proceedings of the 23rd symposium on the interface. Computing science and statistics. New York: American Statistical Association; 1991. p. 156–163.
  • SugitaY, OkamotoY. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314(1–2):141–151.
  • FallerR, YanQL, de PabloJJ. Multicanonical parallel tempering. J Chem Phys. 2002;116(13):5419–5423.
  • EarlDJ, DeemMW. Parallel tempering: theory, applications, and new perspectives. Phys Chem Chem Phys. 2005;7:3910–3916.
  • YanQL, de PabloJJ. Hyperparallel tempering Monte Carlo simulation of polymeric systems. J Chem Phys. 2000;113(3):1276–1282.
  • PerssonRAX. Perturbation method to calculate the density of states. Phys Rev E. 2012;86:066708.
  • MingL, NordholmS, SchranzHW. On the estimation of anharmonic densities of states of molecules. Chem Phys Lett. 1996;248(3–4):228–236.
  • LabastieP, WhettenRL. Statistical thermodynamics of the cluster solid-liquid transition. Phys Rev Lett. 1990;65(13):1567–1570.
  • ChengH-P, LiX, WhettenRL, BerryRS. Complete statistical thermodynamics of the cluster solid-liquid transition. Phys Rev A. 1992;46(2):791–800.
  • PoteauR, SpiegelmannF, LabastieP. Isomerisation and phase transitions in small sodium clusters. Z Phys D: At, Mol Cluster. 1994;30(1):57–68.
  • CalvoF, LabastieP. Configurational density of states from molecular dynamics simulations. Chem Phys Lett. 1995;247(4–6):395–400.
  • FerrenbergAM, SwendsenRH. New Monte Carlo technique for studying phase transitions. Phys Rev Lett. 1988;61(23):2635–2638.
  • FerrenbergAM, SwendsenRH. Optimized monte carlo data analysis. Phys Rev Lett. 1988;63(12):1195–1198.
  • WangF, LandauDP. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101.
  • WangF, LandauDP. Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States. Phys Rev Lett. 2001;86(10):2050–2053.
  • BergBA, NeuhausT. Multicanonical algorithms for first order phase transitions. Phys Lett B. 1991;267(2):249–253.
  • LeeJ. New Monte Carlo algorithm: entropic sampling. Phys Rev Lett. 1993;71(2):211–214.
  • GeyerCJ, ThompsonEA. Annealing markov chain monte carlo with applications to ancestral inference. J Am Stat Assoc. 1995;90(431):909–920.
  • WangJ-S, TayTK, SwendsenRH. Transition matrix Monte Carlo reweighting and dynamics. Phys Rev Lett. 1999;82(3):476–479.
  • HeilmannF, HoffmannKH. ParQ-high-precision calculation of the density of states. Europhys Lett. 2005;70(2):155–161.
  • PárayLB, BartókAP, CsányiG. Efficient sampling of atomic configurational spaces. J Phys Chem B. 2010;114(32):10502–10512.
  • BrewerBJ, PártayLB, CsányiG. Diffusive nested sampling. Stat Comput. 2011;21(4):649–656.
  • DoH, HirstJD, WheatleyRJ. Rapid calculation of partition functions and free energies of fluids. J Chem Phys. 2011;135(17):174105.
  • DoH, HirstJD, WheatleyRJ. Calculation of partition functions and free energies of a binary mixture using the energy partitioning method: application to carbon dioxide and methane. J Phys Chem B. 2012;116(15):4535–4542.
  • KofkeDA. Free energy methods in molecular simulation. Fluid Phase Equilib. 2005;228–229(0):41–48.
  • WildingNB. Critical-point and coexistence-curve properties of the Lennard-Jones fluid: a finite-size scaling study. Phys Rev E. 1995;52:602–611.
  • KiyoharaK, GubbinsKE, PanagiotopoulosAZ. Phase coexistence properties of polarizable Stockmayer fluids. J Chem Phys. 1997;106(8):3338.
  • FenwickMK. A direct multiple histogram reweighting method for optimal computation of the density of states. J Chem Phys. 2008;129(12):125106.
  • ConradPB, de PabloJJ. Phase coexistence properties of polarizable Stockmayer fluids. Fluid Phase Equilib. 1998;150–151:51–61.
  • de PabloJJ, YanQ, EsobedoFA. Simulation of phase transitions in fluids. Ann Rev Phys Chem. 1999;50:377–411.
  • PanagiotopoulosAZ. Monte Carlo methods for phase equilibria of fluids. J Phys-cond Mat. 2000;12(3):25–52.
  • WildingNB. Computer simulation of fluid phase transitions. Am J Phys. 2001;69(11):1147–1155.
  • PotoffJJ, PanagiotopoulosAZ. Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture. J Chem Phys. 1998;109(24):10914–10920.
  • WildingNB. Critical end point behavior in a binary mixture. Phys Rev E. 1997;55:6624–6631.
  • ShellMS, DebenedettiPG, PanagiotopoulosAZ. Generalization of the Wang-Landau method for off-lattice simulations. Phys Rev E. 2002;66:056703.
  • SchulzBJ, BinderK, MullerM, LandauDP. Avoiding boundary effects in Wang-Landau sampling. Phys Rev E. 2003;67:067102.
  • LandauDP, TsaiS-H, ExlerM. A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am J Phys. 2004;72(10):1294–1302.
  • Cunha-NettoAG, CaparicaAA, TsaiS-H, DickmanR, LandauDP. Improving Wang-Landau sampling with adaptive windows. Phys Rev E. 2008;78(5):055701.
  • NielsenSO. Nested sampling in the canonical ensemble: direct calculation of the partition function from NVT trajectories. J Chem Phys, in preparation2013.
  • SkillingJ. Nested sampling. Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Garching, Germany; 2004 p. 395–405.
  • SkillingJ. Nested sampling for general Bayesian computation. Bayesian Anal. 2006;1(4):833–859.
  • De LangeMF, Gutierrez-SevillanoJ-J, HamadS, VlugtTJH, CaleroS, GasconJ, KapteijnF. Understanding adsorption of highly polar vapors on mesoporous MIL-100(Cr) and MIL-101(Cr): experiments and molecular simulations. J Phys Chem. 2013.
  • MartynaGJ, TuckermanM, TobiasDJ, KleinML. Explicit reversible integrators for extended systems dynamics. Mol Phys. 1996;87:1117–1157.
  • BondSD, LeimkuhlerBJ, LairdBB. The Nosé Poincare method for constant temperature molecular dynamics. J Comp Phys. 1999;151(1):114–134.
  • MillerTF, EleftheriouM, PattnaikP, NdirangoA, NewnsD, MartynaGJ. Symplectic quaternion scheme for biophysical molecular dynamics. J Chem Phys. 2002;116(20):8649–8659.
  • LeimkuhlerBJ, SweetCR. The canonical ensemble via symplectic integrators using Nosé and Nosé Poincare chains. J Chem Phys. 2004;121(1):108–116.
  • LeimkuhlerBJ, SweetC. A hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J Appl Dyn Syst. 2005;4(1):187–216.
  • TuckermanME, AlejandreJ, Lopez-RendonR, JochimAL, MartynaGJ. A Liouville-operator derived. measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble. J Phys A. 2006;39:5629–5651.
  • YuT-Q, AlejandreJ, Lopez-RendonR, MartynaGJ, TuckermanME. Measure-preserving integrators for molecular dynamics in the isothermal-isobaric ensemble derived from the Liouville operator. Chem Phys. 2010;370:294–305.
  • KaraviasF, MyersAL. Isosteric heats of multicomponent adsorption – thermodynamics and computer-simulations. Langmuir. 1991;7(12):3118–3126.
  • ThomasLL, ChristakisTJ, JorgensenWL. Conformation of alkanes in the gas phase and pure liquids. J Phys Chem B. 2006;110(42):21198–21204.
  • MyersAL, PrausnitzJM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11(1):121.