795
Views
31
CrossRef citations to date
0
Altmetric
Articles

Experiences with the publicly available multipurpose simulation code, Music

, , &
Pages 1223-1232 | Received 06 May 2013, Accepted 18 Jun 2013, Published online: 03 Sep 2013

REFERENCES

  • PlimptonS. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • PhillipsJC, BraunR, WangW, GumbartJ, TajkhorshidE, VillaE, ChipotC, SkeelRD, KaléL, SchultenK. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802.
  • BerendsenHJC, van der SpoelD, van DrunenR. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • SmithW, YongCW, RodgerPM. DL_POLY: application to molecular simulation. Mol Simul. 2002;28:385–471.
  • Martin MG. MCCCS (Monte Carlo for complex chemical systems) [Internet]. [updated 2011 Aug 09]. Available from: http://towhee.sourceforge.net.
  • Kofke DA, Schultz AJ. Etomica [Internet]. Available from: http://www.etomica.org.
  • JorgensenWL, Tirado-RivesJ. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem. 2005;26:1689–1700.
  • Purton J, Qin R, Smith W, Seaton MA. The DL_MONTE: Monte Carlo Simulation Package [Internet]. Available from: http://www.stfc.ac.uk/cse/DL_MONTE/36149.aspx.
  • Accelrys Software, Inc. Available from: http://accelrys.com.
  • Materials Design, Inc. Available from: http://www.materialsdesign.com.
  • JuneRL, BellAT, TheodorouDN. Prediction of low occupancy sorption of alkanes in silicalite. J Phys Chem. 1990;94:1508–1516.
  • SnurrRQ, JuneRL, BellAT, TheodorouDN. Molecular simulations of methane adsorption in silicalite. Mol Simul. 1991;8:73–92.
  • GuptaA, ChempathS, SanbornMJ, ClarkLA, SnurrRQ. Object-oriented programming paradigms for molecular modeling. Mol Simul. 2003;29:29–46.
  • ChempathS, DenayerJFM, De MeyerKMA, BaronGV, SnurrRQ. Adsorption of liquid-phase alkane mixtures in silicalite: simulations and experiment. Langmuir. 2004;20:150–156.
  • ChempathS, SnurrRQ, DenayerJFM, BaronGV. Molecular siting in the liquid-phase adsorption of alkane and aromatic mixtures in MFI zeolites: an experimental and molecular modeling study. Studies in Surf. Sci. & Catal. Part B. 2004;154:1983–1990.
  • DaemsI, BaronGV, PunnathanamS, SnurrRQ, DenayerJFM. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J Phys Chem C. 2007;111:2191–2197.
  • LucenaSMP, SnurrRQ, CavalcanteCLJr. Monte Carlo and energy minimization studies of binary xylene adsorption in AEL and AFI networks. Adsorption. 2007;13:477–484.
  • ZengY, JuS, XingW, ChenC. Computer simulation of the adsorption of thiophene/benzene mixtures on MFI and MOR. Sep Purif Technol. 2007;55:82–90.
  • LucenaSMP, SnurrRQ, CavalcanteCLJr. Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Micropor Mesopor Mater. 2008;111:89–96.
  • ZengY, JuS. Adsorption of thiophene and benzene in sodium-exchanged MFI- and MOR-type zeolites: a molecular simulation study. Sep Purif Technol. 2009;67:71–78.
  • LucenaSMP, SnurrRQ, CavalcanteCLJr. Effect of framework distortion on xylene adsorption in AlPO4-11 predicted from Monte Carlo simulations. Micropor Mesopor Mater. 2010;127:157–160.
  • PunnathanamS, DenayerJFM, DaemsI, BaronGV, SnurrRQ. Parallel tempering simulations of liquid-phase adsorption of n-alkane mixtures in zeolite LTA-5A. J Phys Chem C. 2011;115:762–769.
  • ClarkLA, ChempathS, SnurrRQ. Simulated adsorption properties and synthesis prospects of homochiral porous solids based on their heterochiral analogs. Langmuir. 2005;21:2267–2272.
  • YazaydinAO, ThompsonRW. Molecular simulation of water adsorption in silicalite: effect of silanol groups and different cations. Micropor Mesopor Mater. 2009;123:169–176.
  • RamachandranCE, ChempathS, BroadbeltLJ, SnurrRQ. Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite. Micropor Mesopor Mater. 2006;90:293–298.
  • BabaraoR, HuZ, JiangJ, ChempathS, SandlerSI. Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir. 2006;23:659–666.
  • GhoufiA, GaberovaL, RouquerolJ, VincentD, LlewellynPL, MaurinG. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements. Micropor Mesopor Mater. 2009;119:117–128.
  • HuthAJ, StueveJM, GuliantsVV. A simulation study of the gas separation properties of decadodecasil 3R zeolite with emphasis on energy-related separations. J Membr Sci. 2012;403:236–249.
  • FischerM, BellRG. Influence of zeolite topology on CO2/N2 separation behavior: force-field simulations using a DFT-derived charge model. J Phys Chem C. 2012;116:26449–26463.
  • DürenT, SarkisovL, YaghiOM, SnurrRQ. Design of new materials for methane storage. Langmuir. 2004;20:2683–2689.
  • SarkisovL, DürenT, SnurrRQ. Molecular modelling of adsorption in novel nanoporous metal-organic materials. Mol Phys. 2004;102:211–221.
  • SarkisovL, HarrisonA. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Simul. 2011;37:1248–1257.
  • MaS, SunD, SimmonsJM, CollierCD, YuanD, ZhouH-C. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc. 2007;130:1012–1016.
  • GetzschmannJ, SenkovskaI, WallacherD, TovarM, Fairen-JimenezD, DürenT, van BatenJM, KrishnaR, KaskelS. Methane storage mechanism in the metal-organic framework Cu3(btc)2: an in situ neutron diffraction study. Micropor Mesopor Mater. 2010;136:50–58.
  • ProsenjakC, BanuAM, GellanAD, DürenT. Hydrogen thermal desorption spectra: insights from molecular simulation. Dalton Trans. 2012;41:3974–3984.
  • RossinA, Fairen-JimenezD, DürenT, GiambastianiG, PeruzziniM, VitilloJG. Hydrogen uptake by {H[Mg(HCOO)(3)] superset of NHMe2}(infinity) and determination of its H2 adsorption sites through Monte Carlo simulations. Langmuir. 2011;27:10124–10131.
  • AssfourB, SeifertG. Hydrogen storage in 1D nanotube-like channels metal-organic frameworks: effects of free volume and heat of adsorption on hydrogen uptake. Int J Hydrogen Energy. 2009;34:8135–8143.
  • AssfourB, SeifertG. Adsorption of hydrogen in covalent organic frameworks: comparison of simulations and experiments. Micropor Mesopor Mater. 2010;133:59–65.
  • AssfourB, LeoniS, YurchenkoS, SeifertG. Hydrogen storage in zeolite imidazolate frameworks: a multiscale theoretical investigation. Int J Hydrogen Energy. 2011;36:6005–6013.
  • BaburinIA, AssfourB, SeifertG, LeoniS. Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. Dalton Trans. 2011;40:3796–3798.
  • BaeYS, SnurrRQ. Molecular simulations of very high pressure hydrogen storage using metal-organic frameworks. Micropor Mesopor Mater. 2010;135:178–186.
  • KarraJR, WaltonKS. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J Phys Chem C. 2010;114:15735–15740.
  • LiB, WeiSH, ChenL. Molecular simulation of CO2, N2 and CH4 adsorption and separation in ZIF-78 and ZIF-79. Mol Simul. 2011;37:1131–1142.
  • ZhangZJ, LiuJC, LiZ, LiJ. Experimental and theoretical investigations on the MMOF selectivity for CO2 vs. N2 in flue gas mixtures. Dalton Trans. 2012;41:4232–4238.
  • ZhangZJ, LiZ, LiJ. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework. Langmuir. 2012;28:12122–12133.
  • YuJM, MaYG, BalbuenaPB. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks. Langmuir. 2012;28:8064–8071.
  • JasujaH, ZangJ, ShollDS, WaltonKS. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J Phys Chem C. 2012;116:23526–23532.
  • JorgeM, LamiaN, RodriguesAE. Molecular simulation of propane/propylene separation on the metal-organic framework CuBTC. Colloids Surf A Physicochem Eng Asp. 2010;357:27–34.
  • GuoHC, ShiF, MaZF, LiuXQ. Molecular simulation for adsorption and separation of CH4/H2 in zeolitic imidazolate frameworks. J Phys Chem C. 2010;114:12158–12165.
  • PengX, ChengX, CaoDP. Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks. J Mater Chem. 2011;21:11259–11270.
  • Fairen-JimenezD, GalvelisR, TorrisiA, GellanAD, WharmbyMT, WrightPA, Mellot-DraznieksC, DürenT. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. Dalton Trans. 2012;41:10752–10762.
  • HuangL, ZhangL, ShaoQ, LuL, LuX, JiangS, ShenW. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J Phys Chem C. 2007;111:11912–11920.
  • SeversonBL, SnurrRQ. Monte Carlo simulation of n-alkane adsorption isotherms in carbon slit pores. J Chem Phys. 2007;126:134708.
  • KonduriHM, TongSChempath, NairS. Water in single-walled aluminosilicate nanotubes: diffusion and adsorption properties. J Phys Chem. 2008;112:15367–15374.
  • LucenaSMP, PaivaCAS, SilvinoPFG, AzevedoDCS, CavalcanteCLJr. The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon. 2010;48:2554–2565.
  • ZangJ, ChempathS, KonduriS, NairS, ShollDS. Flexibility of ordered surface hydroxyls influences the adsorption of molecules in single-walled aluminosilicate nanotubes. J Phys Chem Lett. 2010;1:1235–1240.
  • LiXD, TangYJ, ChengXL, ZhangH. Density functional theory and grand canonical Monte Carlo simulations of the hydrogen storage properties of partially truncated and open cage C-60 fullerenes. Chin Phys Lett. 2011;28:113102-1–113102-4.
  • MahdizadehSJ, TayyariSF. Influence of temperature, pressure, nanotube's diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays. Theor Chem Acc. 2011;128:231–240.
  • ShadmanM, AhadiZ. Argon and neon storages in single-walled boron nitride nanotubes: a grand canonical Monte Carlo study. Fullerenes Nanotubes Carbon Nanostruct. 2011;19:700–712.
  • WangWJ, PengX, CaoDP. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study. Environ Sci Technol. 2011;45:4832–4838.
  • AhadiZ, ShadmanM, YeganegiS, AsgariF. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study. J Mol Model. 2012;18:2981–2991.
  • DvoyashkinM, ZangJ, YucelenGI, KatiharA, NairS, ShollDS, BowersCR, VasenkovS. Diffusion of tetrafluoromethane in single-walled aluminosilicate nanotubes: pulsed field gradient NMR and molecular dynamics simulations. J Phys Chem C. 2012;116:21350–21355.
  • KangDY, TongHM, ZangJ, ChoudhuryRP, ShollDS, BeckhamHW, JonesCW, NairS. Single-walled aluminosilicate nanotube/poly(vinyl alcohol) nanocomposite membranes. ACS Appl Mater Interfaces. 2012;4:965–976.
  • LiuYY, WilcoxJ. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol. 2012;46:1940–1947.
  • MahdizadehSJ, TayyariSF. Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study. J Mol Model. 2012;18:2699–2708.
  • ProsenjakC, NabaisJMV, LaginhasCE, CarrottPJM, CarrottM. Simulations of phenol adsorption onto activated carbon and carbon black. Adsorpt Sci Technol. 2010;28:797–806.
  • DaschbachJL, SunXQ, ThallapallyPK, McGrailBP, DangLX. Grand canonical Monte Carlo studies of CO2 and CH4 adsorption in p-tert-butylcalix[4]arene. J Phys Chem B. 2010;114:5764–5768.
  • HuangS, FinsyV, PersoonsJ, TellingMTF, BaronGV, DenayerJFM. Rotation dynamics of 2-methyl butane and n-pentane in MCM-22 zeolite: a molecular dynamics simulation study. Phys Chem Chem Phys. 2009;11:2869–2875.
  • HerdesC, Ferreiro-RangelCA, DürenT. Predicting neopentane isosteric enthalpy of adsorption at zero coverage in MCM-41. Langmuir. 2011;27:6738–6743.
  • HerdesC, SarkisovL. Computer simulation of volatile organic compound adsorption in atomistic models of molecularly imprinted polymers. Langmuir. 2009;25:5352–5359.
  • DouradoEMA, HerdesC, Van TasselPR, SarkisovL. Molecular recognition effects in atomistic models of imprinted polymers. Int J Mol Sci. 2011;12:4781–4804.
  • SarkisovL. Calculation and visualization of free energy barriers for several VOCs and TNT in HKUST-1. Phys Chem Chem Phys. 2012;14:15438–15444.
  • SeseLM. Feynman–Hibbs potentials and path integrals for quantum Lennard-Jones systems – theory and Monte Carlo simulations. Mol Phys. 1995;85:931–947.
  • ChenL, GrajciarL, NachtigallP, MorrisonCA, DürenT. Accurate prediction of methane adsorption in a metal-organic framework with unsaturated metal sites by direct implementation of an ab initio derived potential energy surface in GCMC simulation. J Phys Chem C. 2011;115:23074–23080.
  • ChenL, MorrisonCA, DürenT. Improving predictions of gas adsorption in metal-organic frameworks with coordinatively unsaturated metal sites: model potentials, ab initio parameterization, and GCMC simulations. J Phys Chem C. 2012;116:18899–18909.
  • SeversonBL, OttinoJM, SnurrRQ. Analysis of lubrication failure using molecular simulation. Tribol Lett. 2006;23:253–260.
  • SanbornMJ, SnurrRQ. Diffusion of binary mixtures of CF4 and n-alkanes in faujasite. Sep Purif Technol. 2000;20:1–13.
  • SanbornMJ, SnurrRQ. Predicting membrane flux of CH4 and CF4 mixtures in faujasite from molecular simulations. AIChE J. 2001;47:2032–2041.
  • ChempathS, KrishnaR, SnurrRQ. Nonequilibrium molecular dynamics simulations of diffusion of binary mixtures containing short n-alkanes in faujasite. J Phys Chem B. 2004;108:13481–13491.
  • AlboSE, BroadbeltLJ, SnurrRQ. Multiscale modeling of transport and residence times in nanostructured membranes. AIChE J. 2006;52:3679–3687.
  • ChempathS, ClarkLA, SnurrRQ. Two general methods for grand canonical ensemble simulation of molecules with internal flexibility. J Chem Phys. 2003;118:7635–7643.
  • ChempathS, PrattLR. Distribution of binding energies of a water molecule in the water liquid–vapor interface. J Phys Chem B. 2009;113:4147–4151.
  • MartiniA, LiuY, SnurrRQ, WangQJ. Molecular dynamics characterization of thin film viscosity for EHL simulation. Tribol Lett. 2006;21:217–225.
  • KrishnaR, BaurR. Modelling issues in zeolite based separation processes. Sep Purif Technol. 2003;33:213–254.
  • BabaraoR, JiangJ. Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from molecular dynamics simulation. Langmuir. 2008;24:5474–5484.
  • DuaneS, KennedyAD, PendletonBJ, RowethD. Hybrid Monte Carlo. Phys Lett B. 1987;195:216–222.
  • ChempathS, PrattLR, PaulaitisME. Distributions of extreme contributions to binding energies of molecules in liquids. Chem Phys Lett. 2010;487:24–27.
  • ChempathS, PrattLR, PaulaitisME. Quasichemical theory with a soft cutoff. J Chem Phys. 2009;130:054113.
  • HeinJ, ReidF, SmithL, BushI, GuestM, SherwoodP. On the performance of molecular dynamics applications on current high-end systems. Philos Trans R Soc A Math Phys Eng Sci. 2005;363:1987–1998.
  • HessB, KutznerC, van der SpoelD, LindahlE. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Loeffler HH, Winn MD. Benchmarks of large biomolecular systems on HPC platforms [Internet]. Available from: http://www.stfc.ac.uk/CSE/randd/cbg/Benchmark/25241.aspx.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.