107
Views
5
CrossRef citations to date
0
Altmetric
Articles

An improved approach for predicting the density of azido compounds

, , &
Pages 491-497 | Received 23 Nov 2012, Accepted 05 Jul 2013, Published online: 06 Aug 2013

REFERENCES

  • StineJR. Prediction of crystal densities of organic explosives by group additivity, Report LA-8920. Los Alamos, NM: Los Alamos National Laboratory; 1981.
  • TarverCM. Density estimations for explosives and related compounds using the group additivity approach. J Chem Eng Data. 1979;24:136–145.
  • PolitzerP, MurrayJS, LaneP. Electrostatic potentials and covalent radii. J Comput Chem. 2003;24:505–511.
  • PolitzerP, MurrayJS. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc. 2002;108:134–142.
  • MurrayJS, BrinckT, LaneP, PaulsenK, PolitzerP. Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF). J Mol Struct-THEOCHEM. 1994;307:55–64.
  • MurrayJS, BrinckT, PolitzerP. Relationships of molecular surface electrostatic potentials to some macroscopic properties. Chem Phys. 1996;204:289–299.
  • PolitzerP, MartinezJ, MarrayJS. An electrostatic interaction correction for improved crystal density prediction. Mol Phys. 2009;107:2095–2101.
  • BouhmaidaN, GhermaniNE. Elusive contribution of the experimental surface molecular electrostatic potential and promolecule approximation in the empirical estimate of the crystal density. J Chem Phys. 2005;122:114101–114109.
  • ZhangJ, XiaoHM. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J Chem Phys. 2002;116:10674–10683.
  • XuXJ, XiaoHM, GongXD, JuXH, ChenZX. Theoretical studies on the vibrational spectra, thermodynamic properties, tetonation properties and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A. 2005;109:11268–11274.
  • AllenFH. The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B Struct Sci. 2002;58:380–388.
  • XuXJ, XiaoHM, JuXH, GongXD, ZhuWH. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J Phys Chem A. 2006;110:5929–5933.
  • QiuL, XiaoHM, GongXD, JuXH, ZhuWH. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J Phys Chem A. 2006;110:3797–3807.
  • QiuL, XiaoHM, JuXH, GongXD. Theoretical study of the structures and properties of cyclic nitramines: tetranitrotetraazadecalin (TNAD) and its isomers. Int J Quant Chem. 2005;105:48–56.
  • WangGX, GongXD, LiuY, DuHC, XiaoHM. Prediction of crystalline densities of polynitro arenas for estimation of their detonation performance based on quantum chemistry. J Mol Struct-THEOCHEM. 2010;953:163–169.
  • XuXJ, XiaoHM, MaXF, JuXH. Looking for high-energy density compounds among hexaazaadamantane derivatives with –CN, –NC, and –ONO2 groups. Int J Quant Chem. 2006;106:1561–1568.
  • XuXJ, ZhuWH, GongXD, XiaoHM. Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid. Sci China B. 2008;51:427–439.
  • QiuL, GongXD, JuXH, XiaoHM. Substituent effect on the molecular stability, group interaction, detonation performance, and thermolysis mechanism of nitroamino-substituted cyclopentanes and cyclohexanes. Sci China B. 2008;51:1231–1245.
  • XiaoHM, XuXJ, QiuL. Theoretical design of high energy density materials. Beijing: Science Press; 2008.
  • WangGX, ShiCH, GongXD, XiaoHM. Theoretical investigation on structures, density, detonation properties and pyrolysis mechanism of the derivatives of HNS. J Phys Chem A. 2009;113:1318–1326.
  • WangGX, GongXD, XiaoHM. Theoretical investigation on density, detonation properties and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes. Int J Quant Chem. 2009;109:1522–1530.
  • QiuLM, GongXD, WangGX, ZhengJ, XiaoHM. Looking for high energy density compounds among 1,3-bishomopentaprismane derivatives with –CN, –NC, and –ONO2 groups. J Phys Chem A. 2009;113:2607–2614.
  • QiuLM, GongXD, ZhengJ, XiaoHM. Theoretical studies on polynitro-1,3-bishomophentaprismanes as potential high energy density compounds. J Hazard Mater. 2009;166:931–938.
  • WangGX, GongXD, LiuY, DuHC, XuXJ, XiaoHM. A theoretical investigation on the structures, density, detonation properties, pyrolysis mechanisms and impact sensitivity of nitro derivatives of toluenes. J Hazard Mater. 2010;177:703–710.
  • WangGX, GongXD, LiuY, XiaoHM. A theoretical investigation on the structures, densities, detonation properties, pyrolysis mechanism of the nitro derivatives of phenols. Int J Quant Chem. 2010;110:1691–1701.
  • ZhanC-G, SpencerPS, DixonDA. Chromogenic and neurotoxic effects of aliphatic γ-diketone: computational insights into the molecular structures and mechanism. J Phys Chem B. 2004;108:6098–6104.
  • MennucciB, TomasiJ. Continuum solvation models: a new approach to the problem of solute's charge distribution and cavity boundaries. J Chem Phys. 1997;106:5151–5158.
  • MennucciB, CancèsE, TomasiJ. Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation and numerical applications. J Phys Chem B. 1997;101:10506–10517.
  • TomasiJ, MennucciB, CancèsE. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct-THEOCHEM. 1999;464:211–226.
  • BaroneV, CossiM, TomasiJ. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys. 1997;107:3210–3221.
  • BeckeAD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100.
  • LeeC, YangW, ParrRG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.
  • BeckeAD. Density-functional thermochemistry. III: The role of exact exchange. J Chem Phys. 1993;98:5648–5652.
  • StephensPJ, DevlinFJ, ChabalowskiCF, FrischMJ. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98:11623–11627.
  • FrischMJ, TrucksGW, SchlegelHB, SuzerainGE, RobbMA, CheesemanJRJr, MontgomeryJA, VrevenT, KudinKN, BurantJC, MillamJM, IyengarSS, TomasiJ, BaroneV, MennucciB, CossiM, ScalmaniG, RegaN, PeterssonGA, NakatsujiH, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, KleneM, LiX, KnoxJE, HratchianHP, CrossJB, BakkenV, AdamoC, JaramilloJ, GompertsR, StratmannRE, YazyevO, AustinAJ, CammiR, PomelliC, OchterskiJW, AyalaPY, MorokumaK, VothGA, SalvadorP, DannenbergJJ, ZakrzewskiVG, DapprichS, DanielsAD, StrainMC, FarkasO, MalickDK, RabuckAD, RaghavachariK, ForesmanJB, OrtizJV, CuiQ, BaboulAG, CliffordS, CioslowskiJ, StefanovB, LiuG, LiashenkoA, PiskorzP, KomaromiI, MartinRL, FoxDJ, KeithT, Al-LahamMA, PengCY, NanayakkaraA, ChallacombeM, GillPMW, JohnsonB, ChenW, WongMW, GonzalezC, PopleJA. Gaussian 03, revision B.05. Wallingford: Gaussian; 2004.
  • DreesD, LöffelD, MessmerA, SchmidK. Synthesis and characterization of azido plasticizer. Propell Explos Pyrotech. 1999;24:159–162.
  • UnkelbachG, KeicherT, KrauseH. Synthesis and characterization of new triazido-plasticizers. Proceedings of the 36th International Annual Conference of ICT & 32nd International Pyrotechnics Seminar, Karlsruhe Pfinztal; 2005.
  • Simmons RL, Young HL. Azidonitramine. United States patent US 4,450,110. 1984.
  • Frankel MB, Witucki EF. Azido fluorodinitro amines. United States patent US 4,432,815. 1984.
  • ZhangZG, WangBZ, ShiZC, JiYP, LiuQ, ZhuCH. Synthesis and properties of 1,7-diazido-2,4,6-trinitro-2,4,6-triazoheptane. Chin J Explos Propell. 2003;26:3–7.
  • WangJ, LiSF. Study on synthesis and properties of energetic plasticizer PDADN. J Solid Rocket Technol. 1999;22:41–45.
  • YangKX. Research advance on azide composite solid propellant techniques. Aerospace Shanghai. 1992;2:25–33.
  • OuYX, ChenBR, YanH, DongSA. Synthesis and characteristics of high energy density azidonitramine additives. J Beijing Inst Technol. 1996;16:121–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.