685
Views
13
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation of O2 diffusion in polydimethylsiloxane (PDMS) and end-linked PDMS networks

&
Pages 976-986 | Received 19 Apr 2013, Accepted 25 Jul 2013, Published online: 05 Sep 2013

References

  • PooranR, TungS, KimJW. Application of a PDMS microsieve for the patterning of flagellar motors in a microfluidic system. MEMS. 2005;7:37–41.
  • NourM, BereanK, GriffinMJ, MatthewsGI, BhaskaranM, SriramS, Kalantar-ZadehK. Nanocomposite carbon-PDMS membranes for gas separation. Sens Actuators B. 2012;161:982–988.
  • PanF, SpenceH, SpearotD, HuangA. Nano-particle polymer composite MEMS corrosion. Proceedings of the 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2011:1144–1148.
  • Dow Corning Corporation. Materials Safety Data Sheet for Sylgard® 184 Silicone Elastomer Base and Curing Agent ; 2010.
  • TrohalakiS, RigbyD, KlockowskiA, MarkJE, RoeRJ. Estimation of diffusion coefficients for CO2 in polyethylene by molecular dynamics simulation. Polym Prepr. 1989;30:23–24.
  • TakeuchiH, OkazakiK. Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer. J Chem Phys. 1990;92:5643–5652.
  • BoydRH, Krishna PantPV. Molecular packing and diffusion in polyisobutylene. Macromolecules. 1991;24:6325–6331.
  • SokRM, BerendsenHJC, van GensterenWF. Molecular dynamics simulation of the transport of small molecules across a polymer membrane. J Chem Phys. 1992;96:4699–4704.
  • TamaiT, TanakaH, NakanishiK. Molecular simulation of permeation of small penetrants through membranes. 1. Diffusion coefficients. Macromolecules. 1994;27:4498–4508.
  • CharatiSG, SternSA. Diffusion of gasses in silicone polymers: molecular dynamics simulations. Macromolecules. 1998;31:5529–5535.
  • JawalkarSS, AminabhaviTM. Molecular dynamics simulations to compute diffusion coefficients of gases into polydimethylsiloxane and poly{(1,5-naphthalene)-co-[1,4-durene-2,2′-bis(3,4-dicarboxyl phenyl)hexaflouropropane diimide]}. Polym Int. 2007;56:928–934.
  • SudibjoA, SpearotDE. Molecular dynamics simulation of diffusion of small atmospheric penetratesin polydimethylsiloxane. Mol Simulat. 2011;37:115–122.
  • SpearotDE, SudibjoA, UllalVN, HuangA. Molecular dynamics simulations of diffusion of O2 and N2 penetrants in polydimethylsiloxane-based nanocomposites. J Eng Mater Technol. 2012;134(021013):1–8.
  • ShyLY, LeungYK, EichingerBE. Computer simulation of gelation. Macromolecules. 1985;18:983–986.
  • SchulzM, FrischHL. Microphase and macrophase separation in irreversible reacting chemical binary mixtures. J Chem Phys. 1994;101:5013–5016.
  • DohertyDC, HolmesBN, LeungP, RossRB. Polymerization molecular dynamics simulations. I. Cross-linked atomistic models for poly(methacrylate) networks. Comput Theor Polym Sci. 1998;8:169–178.
  • HeineDR, GrestGS, LorenzCD, TsigeM, StevensMJ. Atomistic simulations of end-linked poly(dimethylsiloxane) networks: structure and relaxation. Macromolecules. 2004;37:3857–3864.
  • TsigeM, LorenzCD, StevensMJ. Role of network connectivity on the mechanical properties of highly cross-linked polymers. Macromolecules. 2004;37:8466–8472.
  • TsigeM, StevensMJ. Effect of cross-linker functionality on the adhesion of highly cross-linked polymer networks: a molecular dynamics study of epoxies. Macromolecules. 2004;37:630–637.
  • KomarovP, TsungCY, MingCS, KhalaturPG, ReinekerP. Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules. 2007;40:8104–8113.
  • VarshneyV, PatnaikSS, RoyAK, FarmerBL. A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and materials properties. Macromolecules. 2008;41:6837–6842.
  • LiC, StratchanA. Molecular simulations of crosslinking process of thermosetting polymers. Polymer. 2010;51:6058–6070.
  • AllenMP, TildesleyDJ. Computer simulation of liquids. Oxford: Clarendon; 2000.
  • TorrensIM. Interatomic potentials. New York, NY: Academic Press; 1972.
  • FrischknechtAL, CurroJG. Improved united atom force field for poly(dimethylsiloxane). Macromolecules. 2003;36:2122–2129.
  • SperlingLH. Introduction to physical polymer science. Hoboken, NJ: Wiley; 2006.
  • Martin MG, MCCCS Towhee. http://towhee.sourceforge.net/algorithm/cbmc.html.
  • LAMMPS. http://lammps.sandia.gov.
  • HanJ, GeeRH, BoydRH. Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules. 1994;27:7781–7784.
  • AndradyAL, LlorenteMA, MarkJE. Some dynamic mechanical properties of unimodal and bimodal networks of poly(dimethylsiloxane). Polym Bull. 1991;26:357–362.
  • WilliamsM, LandelR, FerryJ. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc. 1955;77:3701–3707.
  • GabbottP. Principles and applications of thermal analysis. Ames: Blackwell Publishing; 2007.
  • FerryJD. Viscoelastic properties of polymers. New York, NY: Wiley; 1980.
  • LomelliniP. Williams–Landel–Ferry versus Arrhenius behavior: polystyrene melt viscoelasticity revised. Polymer. 1992;33:4983–4989.
  • AngellCA. Why C1 = 16-17 in the WLF equation is physical and the fragility of polymers. Polymer. 1997;38:6261–6266.
  • UrakawaO, SwallenSF, EdigerMD, Von MeerwallED. Self-diffusion and viscosity of low molecular weight polystyrene over a wide temperature range. Macromolecules. 2004;37:1558–1564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.