74
Views
4
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

A determination of liquid–vapour interfacial properties for methanol using a linear-combination-based isotropic periodic sum

&
Pages 795-800 | Received 31 Jan 2014, Accepted 06 Apr 2014, Published online: 03 Jul 2014

References

  • Ewald P. The calculation of optical and electrostatic grid potential. Ann Phys. 1921;64:253–287.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.
  • Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Kia A, Kim D, Darve E. Fast electrostatic force calculation on parallel computer clusters. J Comput Phys. 2008;227:8551–8567.
  • Yokota R, Barba LA, Narumi T, Yasuoka K. Petascale turbulence simulation using a highly parallel fast multipole method on GPUs. Comput Phys Commun. 2013;184:445–455.
  • Roberts J, Schnitker J. How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations. J Chem Phys. 1994;101:5024–5031.
  • Roberts J, Schnitker J. Boundary conditions in simulations of aqueous ionic solutions: a systematic study. J Phys Chem. 1995;99:1322–1331.
  • Luty B, Van Gunsteren W. Calculating electrostatic interactions using the particle–particle particle–mesh method with nonperiodic long-range interactions. J Phys Chem. 1996;100:2581–2587.
  • Hünenberger P, McCammon J. Ewald artifacts in computer simulations of ionic solvation and ion–ion interaction: a continuum electrostatics study. J Chem Phys. 1999;110:1856–1872.
  • Hünenberger P, McCammon J. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem. 1999;78:69–88.
  • Weber W, Hünenberger P, McCammon J. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: influence of artificial periodicity on peptide conformation. J Phys Chem B. 2000;104:3668–3675.
  • Patra M, Karttunen M, Hyvönen M, Falck E, Lindqvist P, Vattulainen I. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J. 2003;84:3636–3645.
  • Patra M, Karttunen M, Hyvönen M, Falck E, Vattulainen I. Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B. 2004;108:4485–4494.
  • Monticelli L, Simões C, Belvisi L, Colombo G. Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides. J Phys Condens Matter. 2006;18:S329–S345.
  • Smit B. Phase diagrams of Lennard-Jones fluids. J Chem Phys. 1992;96:8639–8640.
  • Trokhymchuk A, Alejandre J. Computer simulations of liquid/vapor interface in Lennard-Jones fluids: some questions and answers. J Chem Phys. 1999;111:8510–8523.
  • Lopez-Lemus J, Alejandre J. Thermodynamic and transport properties of simple fluids using lattice sums: bulk phases and liquid–vapour interface. Mol Phys. 2002;100:2983–2992.
  • Neumann M, Steinhauser O. The influence of boundary conditions used in machine simulations on the structure of polar systems. Mol Phys. 1980;39:437–454.
  • Alper H, Levy R. Computer simulations of the dielectric properties of water: studies of the simple point charge and transferrable intermolecular potential models. J Chem Phys. 1989;91:1242–1251.
  • Kitchen D, Hirata F, Westbrook J, Levy R, Kofke D, Yarmush M. Conserving energy during molecular dynamics simulations of water, proteins, and proteins in water. J Comput Chem. 1990;11:1169–1180.
  • Tasaki K, McDonald S, Brady J. Observations concerning the treatment of long-range interactions in molecular dynamics simulations. J Comput Chem. 1993;14:278–284.
  • Smith P, Gunsterenvan W. Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys. 1994;100:3169–3174.
  • Feller S, Pastor R, Rojnuckarin A, Bogusz S, Brooks B. Effect of electrostatic force truncation on interfacial and transport properties of water. J Phys Chem. 1996;100:17011–17020.
  • Spoelvan der D, Maarenvan P, Berendsen H. A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J Chem Phys. 1998;108:10220–10230.
  • Mark P, Nilsson L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations. J Comput Chem. 2002;23:1211–1219.
  • Yonetani Y. A severe artifact in simulation of liquid water using a long cut-off length: appearance of a strange layer structure. Chem Phys Lett. 2005;406:49–53.
  • Spoelvan der D, Maarenvan P. The origin of layer structure artifacts in simulations of liquid water. J Chem Theory Comput. 2006;2:1–11.
  • Yonetani Y. Liquid water simulation: a critical examination of cutoff length. J Chem Phys. 2006;124:204501.
  • Takahashi KZ. Truncation effects of shift function methods in bulk water systems. Entropy. 2013;15:3249–3264.
  • Loncharich R, Brooks B. The effects of truncating long-range forces on protein dynamics. Proteins Struct Funct Bioinf. 1989;6:32–45.
  • Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry. 1992;31:5856–5860.
  • Schreiber H, Steinhauser O. Molecular dynamics studies of solvated polypeptides: why the cut-off scheme does not work. Chem Phys. 1992;168:75–89.
  • Schreiber H, Steinhauser O. Taming cut-off induced artifacts in molecular dynamics studies of solvated polypeptides. The reaction field method. J Mol Biol. 1992;228:909–923.
  • Saito M. Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions. Mol Simul. 1992;8:321–333.
  • Guenot J, Kollman P. Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J Comput Chem. 1993;14:295–311.
  • Saito M. Molecular dynamics simulations of proteins in solution: artifacts caused by the cutoff approximation. J Chem Phys. 1994;101:4055–4061.
  • Oda K, Miyagawa H, Kitamura K. How does the electrostatic force cut-off generate non-uniform temperature distributions in proteins? Mol Simul. 1996;16:167–177.
  • Norberg J, Nilsson L. On the truncation of long-range electrostatic interactions in DNA. Biophys J. 2000;79:1537–1553.
  • Beck D, Armen R, Daggett V. Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Biochemistry. 2005;44:609–616.
  • Reif M, Kräutler V, Kastenholz M, Daura X, Hünenberger P. Molecular dynamics simulations of a reversibly folding β-heptapeptide in methanol: influence of the treatment of long-range electrostatic interactions. J Phys Chem B. 2009;113:3112–3128.
  • Mazars M. Long ranged interactions in computer simulations and for quasi-2D systems. Phys Rep. 2011;500:43–116.
  • Piana S, Lindorff-Larsen K, Dirks RM, Salmon JK, Dror RO, Shaw DE. Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PLoS One. 2012;7:e39918.
  • Wu X, Brooks B. Isotropic periodic sum: a method for the calculation of long-range interactions. J Chem Phys. 2005;122:044107.
  • Wu X, Brooks B. Using the isotropic periodic sum method to calculate long-range interactions of heterogeneous systems. J Chem Phys. 2008;129:154115.
  • Wu X, Brooks B. Isotropic periodic sum of electrostatic interactions for polar systems. J Chem Phys. 2009;131:024107.
  • Takahashi K, Yasuoka K, Narumi T. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid. J Chem Phys. 2007;127:114511.
  • Takahashi K, Narumi T, Yasuoka K. Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water. J Chem Phys. 2010;133:014109.
  • Takahashi K, Narumi T, Yasuoka K. Cut-off radius effect of the isotropic periodic sum method for polar molecules in a bulk water system. Mol Simul. 2012;38:397–403.
  • Nakamura H, Ohto T, Nagata Y. Polarizable site charge model at liquid/solid interfaces for describing surface polarity: application to structure and molecular dynamics of water/rutile TiO2 (110) interface. J Chem Theory Comput. 2013;9:1193–1201.
  • Klauda J, Wu X, Pastor R, Brooks B. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method. J Phys Chem B. 2007;111:4393–4400.
  • Takahashi KZ, Narumi T, Yasuoka K. Cutoff radius effect of the isotropic periodic sum and Wolf method in liquid–vapor interfaces of water. J Chem Phys. 2011;134:174112.
  • Nozawa T, Takahashi KZ, Kameoka S, Narumi T, Yasuoka K. Application of isotropic periodic sum method for 4-pentyl-4′-cyanobiphenyl liquid crystal. Mol Simul. (submitted).
  • Venable R, Chen L, Pastor R. Comparison of the extended isotropic periodic sum and particle mesh Ewald methods for simulations of lipid bilayers and monolayers. J Phys Chem B. 2009;113:5855–5862.
  • Ojeda-May P, Pu J. Isotropic periodic sum treatment of long-range electrostatic interactions in combined quantum mechanical and molecular mechanical calculations. J Chem Theory Comput. 2014;10:134–145.
  • Takahashi KZ, Narumi T, Suh D, Yasuoka K. An improved isotropic periodic sum method using linear combinations of basis potentials. J Chem Theory Comput. 2012;8:4503–4516.
  • Takahashi KZ, Narumi T, Yasuoka K. A combination of the tree-code and IPS method to simulate large scale systems by molecular dynamics. J Chem Phys. 2011;135:174108.
  • Laaksonen A, Kusalik P, Svishchev I. Three-dimensional structure in water-methanol mixtures. J Phys Chem A. 1997;101:5910–5918.
  • Patel S, Brooks CL III. A nonadditive methanol force field: bulk liquid and liquid–vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model. J Chem Phys. 2005;122:024508.
  • Matsumoto M, Takaoka Y, Kataoka Y. Liquid–vapor interface of water–methanol mixture. I. Computer simulation. J Chem Phys. 1993;98:1464–1472.
  • Matsumoto M, Yasuoka K, Kataoka Y. Evaporation and condensation at a liquid surface. II. Methanol. J Chem Phys. 1994;101:7912–7917.
  • Matsumoto M, Yasuoka K, Kataoka Y. Evaporation and condensation at a liquid methanol surface. J Mol Struct THEOCHEM. 1994;310:161–168.
  • Matsumoto M, Yasuoka K, Kataoka Y. Molecular simulation of evaporation and condensation. Fluid Phase Equilib. 1995;104:431–439.
  • Dang LX, Chang TM. Many-body interactions in liquid methanol and its liquid/vapor interface: a molecular dynamics study. J Chem Phys. 2003;119:9851–9857.
  • Chang TM, Dang LX. Liquid–vapor interface of methanol–water mixtures: a molecular dynamics study. J Phys Chem B. 2005;109:5759–5765.
  • Pártay L, Jedlovszky P, Vincze Á, Horvai G. Structure of the liquid–vapor interface of water–methanol mixtures as seen from Monte Carlo simulations. J Phys Chem B. 2005;109:20493–20503.
  • Yu H, Geerke DP, Liu H, Gunsterenvan WF. Molecular dynamics simulations of liquid methanol and methanol–water mixtures with polarizable models. J Comput Chem. 2006;27:1494–1504.
  • Zhong Y, Warren GL, Patel S. Thermodynamic and structural properties of methanol–water solutions using nonadditive interaction models. J Comput Chem. 2008;29:1142–1152.
  • Kuo IFW, Mundy CJ, McGrath MJ, Siepmann JI. Structure of the methanol liquid–vapor interface: a comprehensive particle-based simulation study. J Phys Chem C. 2008;112:15412–15418.
  • Patel S, Zhong Y, Bauer BA, Davis JE. Interfacial structure, thermodynamics, and electrostatics of aqueous methanol solutions via molecular dynamics simulations using charge equilibration models. J Phys Chem B. 2009;113:9241–9254.
  • Biscay F, Ghoufi A, Lachet V, Malfreyt P. Prediction of the surface tension of the liquid–vapor interface of alcohols from Monte Carlo simulations. J Phys Chem C. 2011;115:8670–8683.
  • Biscay F, Ghoufi A, Malfreyt P. Surface tension of water–alcohol mixtures from Monte Carlo simulations. J Chem Phys. 2011;134:044709.
  • Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc. 1984;106:6638–6646.
  • Siepmann JI, Karaborni S, Smit B. Simulating the critical behaviour of complex fluids. Nature. 1993;365:330–332.
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B. 2001;105:3093–3104.
  • Stubbs JM, Potoff JJ, Siepmann JI. Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B. 2004;108:17596–17605.
  • Walser R, Mark AE, Gunsterenvan WF, Lauterbach M, Wipff G. The effect of force-field parameters on properties of liquids: parametrization of a simple three-site model for methanol. J Chem Phys. 2000;112:10450–10459.
  • Swope W, Andersen H, Berens P, Wilson K. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982;76:637–649.
  • Andersen H. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J Comput Phys. 1983;52:24–34.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Hoover W. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • SouckovaÌ M, Klomfar J, Pátek J. Measurement and correlation of the surface tension–temperature relation for methanol. J Chem Eng Data. 2008;53:2233–2236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.