79
Views
3
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

A 3D-RISM integral equation study of a hydrated dipeptide

, , &
Pages 1015-1020 | Received 20 Mar 2014, Accepted 07 May 2014, Published online: 14 Aug 2014

References

  • Naim AB. Solvation thermodynamics. New York (NY): Springer; 1987.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego (CA): Academic Press; 2001.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York (NY): Oxford University Press; 1989.
  • Binder K, Heermann D. Monte Carlo simulation in statistical physics: an introduction. New York (NY): Springer; 2010.
  • Hansmann UHE, Okamoto Y. The generalized-ensemble approach for protein folding simulations. Annu Rev Comput Phys. 1999;6:129–157.
  • McQuarrie DA. Statistical mechanics. New York (NY): Harper Collins Publishers; 1976.
  • Hansen JP, McDonald IR. Theory of simple liquids. London: Academic Press; 1976.
  • Gray CG, Gubbins KE. Theory of molecular fluids: fundamentals. New York (NY): Oxford University Press; 1985.
  • Hirata F, editor. Molecular theory of solvation. Dordrecht: Kluwer Academic Publishers; 2003.
  • Chandler D, Andersen HC. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J Chem Phys. 1972;57:1930–1936.
  • Beglov D, Roux B. An integral equation to describe the solvation of polar molecules in liquid water. J Phys Chem B. 1997;101:7821–7826.
  • Kovalenko A, Hirata F. Three-dimensionl density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem Phys Lett. 1998;290:237–244.
  • Du Q, Beglov D, Roux B. Solvation free energy of polar and nonpolar molecules in water: an extended interaction site integral equation theory in three dimensions. J Phys Chem B. 2000;104:796–805.
  • Miyata T, Hirata F. Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution. J Comput Chem. 2008;29:871–882.
  • Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A. Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. J Chem Theory Comput. 2010;6:607–624.
  • Imai T, Kovalenko A, Hirata F. Solvation thermodynamics of protein studied by the 3D-RISM theory. Chem Phys Lett. 2004;395:1–6.
  • Imai T, Hiraoka R, Kovalenko A, Hirata F. Water molecules in a protein cavity detected by a statistical-mechanical theory. J Am Chem Soc. 2005;127:15334–15335.
  • Yoshida N, Phongphanphanee S, Maruyama Y, Imai T, Hirata F. Selective ion-binding by protein probed with the 3D-RISM theory. J Am Chem Soc. 2006;128:12042–12043.
  • Imai T, Hiraoka R, Kovalenko A, Hirata F. Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation. Proteins. 2007;66:804–813.
  • Imai T, Oda K, Kovalenko A, Hirata F, Kidera A. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design. J Am Chem Soc. 2009;131:12430–12440.
  • Kiyota Y, Yoshida N, Hirata F, New A. Approach for investigating the molecular recognition of protein: toward structure-based drug design based on the 3D-RISM theory. J Chem Theory Comput. 2011;7:3803–3815.
  • Sindhikara DJ, Yoshida N, Hirata F. Placevent: an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. J Comput Chem. 2012;33:1536–1543.
  • Kovalenko A, Hirata F. Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys. 1999;110:10095–10112.
  • Hermans J. The amino acid dipeptide: Small but still influential after 50 years. Proc Natl Acad Sci USA. 2011;108:3095–3096.
  • Pettitt BM, Karplus M. The potential of mean force surface for the alanine dipeptide in aqueous solution: a theoretical approach. Chem Phys Lett. 1985;121:194–201.
  • Cruz V, Ramos J, Salazar JM. Water-mediated conformations of the alanine dipeptide as revealed by distributed umbrella sampling simulations, quantum mechanics based calculations, and experimental data. J Phys Chem B. 2011;115:4880–4886.
  • Liu P, Kim B, Friesner RA, Berne BJ. Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci USA. 2005;102:13749–13754.
  • Tobias DJ, Brooks CL III. Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: a comparison of theoretical results. J Phys Chem. 1992;96:3864–3870.
  • Apostolakis J, Ferrara P, Carfish A. Calculation of conformational transitions and barriers in solvated systems: application to the alanine dipeptide in water. J Chem Phys. 1999;110:2099–2108.
  • Chipot C, Pohorille A. conformational equilibria of terminally blocked single amino acids at the water–hexane interface. A molecular dynamics study. J Phys Chem B. 1998;102:281–290.
  • Okumura H, Okamoto Y. Temperature and pressure dependence of alanine dipeptide studied by multibaric–multithermal molecular dynamics simulations. J Phys Chem B. 2008;111:12038–12049.
  • Okumura H. Optimization of partial multicanonical molecular dynamics simulations applied to an alanine dipeptide in explicit water solvent. Phys Chem Chem Phys. 2011;13:114–126.
  • Hirata F, Rossky PJ. An extended RISM equation for molecular polar fluids. Chem Phys Lett. 1981;83:329–334.
  • Kell GS. Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J Chem Eng Data. 1975;20:97–105.
  • Perkyns JS, Pettitt BM. A site–site theory for finite concentration saline solutions. J Chem Phys. 1992;97:7656–7666.
  • Hasted JB. Liquid water: dielectric properties. In: Franks F, editor. Water a comprehensive treatise. New York (NY): Plenum Press; 1972. p. 255–263.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Kollman PA, Dixon R, Cornell W, Fox T, Chipot C, Pohorille A. The development/application of a ‘minimalist’ organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data. In: Wilkinson A, Weiner P, van Gunstern WF, editors. Computer simulation of biomolecular system. vol. 3. Berlin: Springer; 1997. p. 83–96.
  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 12. San Francisco (CA): University of California; 2012.
  • Roterman IK, Lambert MH, Gibon KD, Scheraga HA. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi–psi maps for N-acetyl alanine N′-methyl amide: comparisons, contrasts and simple experimental tests. J Biomol Struct Dyn. 1989;78:421–453.
  • Takekiyo T, Imai T, Kato M, Taniguchi Y. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solution. Biopolymers. 2004;73:283–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.