173
Views
11
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Structure, dynamics and hydrogen bonding of acetonitrile in nanoscale silica pores

Pages 788-794 | Received 31 Mar 2014, Accepted 18 May 2014, Published online: 07 Jul 2014

References

  • Levinger NE, Swafford LA. Ultrafast dynamics in reverse micelles. Annu Rev Phys Chem. 2009;60:385–406.
  • Fayer MD, Levinger NE. Analysis of water in confined geometries and at interfaces. Annu Rev Anal Chem. 2010;3:89–107.
  • Thompson WH. Solvation dynamics and proton transfer in nanoconfined liquids. Annu Rev Phys Chem. 2011;62:599–619.
  • Giovambattista N, Rossky PJ, Debenedetti PG. Computational studies of pressure, temperature, and surface effects on the structure and thermodynamics of confined water. Annu Rev Phys Chem. 2012;63:179–200.
  • Nikiel L, Hopkins B, Zerda TW. Rotational and vibrational relaxation of small molecules in porous silica gels. J Phys Chem. 1990;94:7458–7464.
  • Zhang J, Jonas J. , NMR-study of the geometric confinement effects on the anisotropic rotational diffusion of acetonitrile-d3. J Phys Chem. 1993;97:8812–8815.
  • Xu S, Kim YJ, Jonas J. Pressure effects on the anisotropic rotational diffusion of acetonitrile-d3 in confined geometry. Chem Phys Lett. 1994;218:329–332.
  • Tanaka H, Iiyama T, Uekawa N, Suzuki T, Matsumoto A, Grun M, Unger KK, Kaneko K. Molecular mechanism of capillary condensation of acetonitrile vapor on MCM-41 with the aid of a time-correlation function analysis of IR spectroscopy. Chem Phys Lett. 1998;293:541–546.
  • Loughnane BJ, Farrer RA, Fourkas JT. Evidence for the direct observation of molecular exchange of a liquid at the solid/liquid interface. J Phys Chem B. 1998;102:5409–5412.
  • Loughnane BJ, Farrer RA, Scodinu A, Fourkas T. Dynamics of a wetting liquid in nanopores: an optical kerr effect study of the dynamics of acetonitrile confined in sol-gel glasses. J Chem Phys. 1999;111:5116.
  • Loughnane BJ, Scodinu A, Farrer RA, Fourkas JT, Mohanty U. Exponential intermolecular dynamics in optical Kerr effect spectroscopy of small-molecule liquids. J Chem Phys. 1999;111:2686–2694.
  • Loughnane BJ, Farrer RA, Scodinu A, Reilly T, Fourkas JT. Ultrafast spectroscopic studies of the dynamics of liquids confined in nanoporous glasses. J Phys Chem B. 2000;104:5421–5429.
  • Farrer RA, Fourkas JT. Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical Kerr effect spectroscopy. Acc Chem Res. 2003;36:605–612.
  • Koone N, Shao Y, Zerda TW. Diffusion of simple liquids in porous sol-gel glass. J Phys Chem. 1995;99:16976–16981.
  • Kittaka S, Iwashita T, Serizawa A, Kranishi M, Takahara S, Kuroda Y, Mori T, Yamaguchi T. Low temperature properties of acetonitrile confined in MCM-41. J Phys Chem B. 2005;109:23162–23169.
  • Yamaguchi T, Yoshida K, Smirnov P, Takamuku T, Kittaka S, Takahara S, Kuroda Y, Bellissent-Funel MC. Structure and dynamic properties of liquids confined in MCM-41 mesopores. Eur Phys J Spec Top. 2007;141:19–27.
  • Yamaguchi T, Sugino H, Ito K, Yoshida K, Kittaka S. X-ray diffraction study on monolayer and capillary-condensed acetonitrile in mesoporous MCM-41 at low temperatures. J Mol Liq. 2011;164:53–58.
  • Gulmen TS, Thompson WH. Grand canonical Monte Carlo simulations of acetonitrile filling of silica pores of varying hydrophilicity/hydrophobicity. Langmuir. 2009;25:1103–1111.
  • Morales CM, Thompson WH. Simulations of infrared spectra of nanoconfined liquids: acetonitrile confined in nanoscale, hydrophilic silica pores. J Phys Chem A. 2009;113:1922–1933.
  • Norton CD, Thompson WH. On the diffusion of acetonitrile in nanoscale amorphous silica pores: understanding anisotropy and the effects of hydrogen bonding. J Phys Chem C. 2013;117:19107–19114.
  • Norton CD, Thompson WH. Reorientation dynamics of nanoconfined acetonitrile: a critical examination of two-state models. J Phys Chem B ASAP. 2014.
  • Ding F, Hu Z, Zhong Q, Manfred K, Gattass RR, Brindza MR, Fourkas JT, Walker RA, Weeks D. Interfacial organization of acetonitrile: simulation and experiment. J Phys Chem C. 2010;114:17651–17659.
  • Rodriguez J, Dolores Elola M, Laria D. Confined polar mixtures within cylindrical nanocavities. J Phys Chem B. 2010;114:7900–7908.
  • Cheng L, Morrone JA, Berne J. Structure and dynamics of acetonitrile confined in a silica nanopore. J Phys Chem C. 2012;116:9582–9593.
  • Milischuk AA, Ladanyi M. Polarizability anisotropy relaxation in nanoconfinement: molecular simulation study of acetonitrile in silica pores. J Phys Chem B. 2013;117:15729–15740.
  • Purcell KF, Drago S. Studies of bonding in acetonitrile adducts. J Am Chem Soc. 1966;88:919–924.
  • Purcell KF. An investigation into the source of CN vibrational frequency shifts. J Am Chem Soc. 1967;89:247–250.
  • Reimers JR, Hall LE. The solvation of acetonitrile. J Am Chem Soc. 1999;121:3730–3744.
  • The DL_POLY molecular simulation package.http://www.ccp5.ac.uk/DL_POLY.
  • Gulmen TS, Thompson WH. Model silica pores with controllable surface chemistry for molecular dynamics simulations. In: Fourkas JT, Levitz P, Overney R, Urbakh M, editors. Dynamics in small confining systems VIII. Materials Research Society Symposium Proceedings 899E. Warrendale, PA: Materials Research Society; 2005.
  • Gee PJ, Gunsterenvan F. Acetonitrile revisited: a molecular dynamics study of the liquid phase. Mol Phys. 2006;104:477–483.
  • Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • Shoemaker DP, Garland CW, Nibler JW. Experiments in physical chemistry. New York: McGraw-Hill; 1989.
  • Faeder J, Ladanyi BM. Molecular dynamics simulations of the interior of aqueous reverse micelles. J Phys Chem B. 2000;104:1033–1046.
  • Milischuk AA, Ladanyi BM. Structure and dynamics of water confined in silica nanopores. J Chem Phys. 2011;135:174709.
  • Laage D, Thompson WH. Reorientation dynamics of nanoconfined water: power-law decay, hydrogen-bond jumps, and test of a two-state model. J Chem Phys. 2012;136:044513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.