147
Views
3
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Learning chemistry with multiple first-principles simulations

, &
Pages 780-787 | Received 06 Feb 2014, Accepted 18 May 2014, Published online: 07 Jul 2014

References

  • Mitsutake A, Sugita Y, Okamoto Y. Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolym Pept Sci. 2001;60:96–123.
  • Marx D, Hutter J. Ab initio molecular dynamics: basic theory and advanced methods. Cambridge: Cambridge University Press; 2009.
  • Lee MS, Scandolo S. Mixtures of planetary ices at extreme conditions. Nat Commun. 2011;2:1–5.
  • Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer's Prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev. 2006;106:1995–2044.
  • Faller P, Hureau C. Preface to the special issue: metal ions in neurodegenerative diseases. Coordin Chem Rev. 2012;256:2127–2128.
  • La Penna G, Hureau C, Andreussi O, Peter F. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimers disease. J Phys Chem B. 2013;117:16455–16467.
  • Hureau C, Dorlet P. Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-β peptides involved in Alzheimer disease. Part 2: dependence of Cu(II) binding sites with Aβ sequences. Coordin Chem Rev. 2012;256:2175–2187.
  • Balland V, Hureau C, Savéant JM. Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. Proc Natl Acad Sci USA. 2010;107:17113–17118.
  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KMJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197.
  • Garcia AE, Sanbonmatsu KY. β-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci USA. 2002;99:2782–2787.
  • La Penna G, Morante S, Perico A, Rossi GC. Designing generalized statistical ensembles for numerical simulations of biopolymers. J Chem Phys. 2004;121:10725–10741.
  • Furlan S, La Penna G, Perico A. Modeling the free energy of polypeptides in different environments. Macromolecules. 2008;41:2938–2948.
  • Wolf D, Keblinski P, Phillpot SR, Eggebrecht J. Exact method for the simulation of Coulombic systems spherically truncated, pairwise R-1 summation. J Chem Phys. 1999;110:8254–8282.
  • Frenkel D, Smit B. Understanding molecular simulation. San Diego, CA: Academic Press; 1996.
  • La Penna G. A constrained maximum entropy method in polymer statistics. J Chem Phys. 2003;119:8162–8174.
  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli HH, Schubert D, Riek R. 3D structure of Alzheimer's amyloid-β(1-42) fibrils. Proc Natl Acad Sci USA. 2005;102:17342–17347.
  • Miller Y, Ma B, Nussinov R. Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA. 2010;107:9490–9495.
  • Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y. Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer's β by solid-state NMR spectroscopy. J Am Chem Soc. 2011;133:3390–3400.
  • Giannozzi P, Jansen K, La Penna G, Minicozzi V, Morante S, Rossi GC, Francesco S. Zn induced structural aggregation patterns of β-amyloid peptides by first-principle simulations and XAS measurements. Metallomics. 2012;4:156–165.
  • Furlan S, La Penna G. Metal ions and protons compete for ligand atoms in disordered peptides: examples from computer simulations of copper binding to the prion tandem repeat. Coordin Chem Rev. 2012;256:2234–2244.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein MJ. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • Berendsen HJC, Postma JPM, Van Gunsteren WF, Di Nola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. Available from: http://www.ks.uiuc.edu/Research/namd.
  • Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. J Comput Phys. 2009;180:1961–1972.
  • Pang YP, Xu K, El Yazal J, Prendergast FG. Successful molecular dynamics simulation of the zinc-bound farnesyltransferase using the cationic dummy atom approach. Protein Sci. 2000;9:1857–1865.
  • Furlan S, Hureau C, Faller P, La Penna G. Modeling the Cu+ binding in the 1–16 region of the amyloid-β peptide involved in Alzheimer's disease. J Phys Chem B. 2010;114:15119–15133.
  • Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985;55:2471–2474.
  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Paolo U, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21:395502. Available from: http://www.quantum-espresso.org.
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–7895.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed. 2009;48:1198–1229.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799.
  • Barone V, Casarin M, Forrer D, Pavone M, Sambi M, Vittadini A. Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. J Comput Chem. 2009;30:934–939.
  • Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M. Metadynamics simulation of prion protein: β-structure stability and the early stages of misfolding. J Am Chem Soc. 2006;128:2705–2710.
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008;71:126601–126622.
  • Mori Y, Okamoto Y. Free-energy analyses of a proton transfer reaction by simulated-tempering umbrella sampling and first-principles molecular dynamics simulations. Phys Rev E. 2013;87:023301–023304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.