170
Views
5
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Diffusion mechanism of CO2 in a crystalline polymer membrane studied using model gases

&
Pages 974-979 | Received 31 Jan 2014, Accepted 27 May 2014, Published online: 08 Jul 2014

References

  • Milano G, Guerra G. Understanding at molecular level of nanoporous and co-crystalline materials based on syndiotactic polystyrene. Prog Mater Sci. 2009;54:68–88.
  • Guerra G, Daniel C, Rizzo P, Tarallo O. Advanced materials based on polymer cocrystalline forms. J Polym Sci B Polym Phys. 2012;50:305–322.
  • De Rosa C, Guerra G, Petraccone V, Pirozzi B. Crystal structure of the emptied clathrate form (δe form) of syndiotactic polystyrene. Macromolecules. 1997;30:4147–4152.
  • Milano G, Venditto V, Guerra G, Cavallo L, Ciambelli P, Sannino D. Shape and volume of cavities in thermoplastic molecular sieves based on syndiotactic polystyrene. Chem Mater. 2001;13:1506–1511.
  • Tamai Y, Fukuda M. Nanoscale molecular cavity in crystalline polymer membranes studied by molecular dynamics simulation. Polymer. 2003;44:3279–3289.
  • Tamai Y, Fukuda M. Effect of encaged aromatic guests on the shape and connectivity of molecular cavity in crystalline polystyrene evaluated by molecular simulations. J Chem Phys. 2004;121:12085–12093.
  • Milano G, Guerra G, Müller-Plathe F. Anisotropic diffusion of small penetrants in the δ crystalline phase of syndiotactic polystyrene: a molecular dynamics simulation study. Chem Mater. 2002;14:2977–2982.
  • Tamai Y, Fukuda M. Fast one-dimensional gas transport in molecular capillary embedded in polymer crystal. Chem Phys Lett. 2003;371:217–222.
  • Tamai Y. Rearrangement of nanoporous cavity structures in crystalline syndiotactic polystyrene associated with stress-induced phase transition. ACS Macro Lett. 2013;2:834–838.
  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197.
  • Cheung PSY, Powles JG. The properties of liquid nitrogen: IV. A computer simulation. Mol Phys. 1975;30:921–949.
  • Murthy CS, Singer K, McDonald IR. Interaction site models for carbon dioxide. Mol Phys. 1981;44:135–143.
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–341.
  • Ciccotti G, Ferrario M, Ryckaert JP. Molecular dynamics of rigid systems in cartesian coordinates A general formulation. Mol Phys. 1982;47:1253–1264.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.
  • Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967;159:98–103.
  • Ferrario M, Ryckaert J. Constant pressure–constant temperature molecular dynamics for rigid and partially rigid molecular systems. Mol Phys. 1985;54:587–603.
  • Larobina D, Sanguigno L, Venditto V, Guerra G, Mensitieri G. Gas sorption and transport in syndiotactic polystyrene with nanoporous crystalline phase. Polymer. 2004;45:429–436.
  • Widom B. Some topics in the theory of fluids. J Chem Phys. 1963;39:2808.
  • Tamai Y, Tanaka H, Nakanishi K. Molecular simulation of permeation of small penetrants through membranes. 2. Solubilities. Macromolecules. 1995;28:2544–2554.
  • Tamai Y, Tanaka H, Nakanishi K. Molecular simulation of permeation of small penetrants through membranes. 1. Diffusion coefficients. Macromolecules. 1994;27:4498–4508.
  • Tarallo O, Petraccone V, Albunia AR, Daniel C, Guerra G. Monoclinic and triclinic δ-clathrates of syndiotactic polystyrene. Macromolecules. 2010;43:8549–8558.
  • Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359:126–139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.