272
Views
3
CrossRef citations to date
0
Altmetric
Proceedings of the 3rd International Conference on Molecular Simulation

Nanoscale droplet vaporisation by molecular dynamics

&
Pages 896-904 | Received 27 Mar 2014, Accepted 18 Sep 2014, Published online: 20 Oct 2014

References

  • Shin HH, Suh D, Yoon WS. Non-equilibrium molecular dynamics of nanojet injection in a high pressure environment. Microfluid Nanofluid. 2008;5(4):561–570.
  • Sirignano WA, Delplanque JP. Transcritical vaporization of liquid fuels and propellants. J Propul Power. 1999;15(6):896–902.
  • Yan CL, Aggarwal SK. A high-pressure droplet model for spray simulations. J Eng Gas Turbines Power – Trans ASME. 2006;128(3):482–492.
  • Turns S. An introduction to combustion: concepts and applications. 2nd ed. Singapore: McGraw-Hill International Editions; 2000.
  • Hsiao CG. Supercritical droplet vaporization and combustion in quiescent and forced–convective environments [dissertation]. Pennsylvania State University; 1995.
  • Kincaid DC, Longley TS. A water droplet evaporation and temperature model. Trans ASAE. 1989;32(2):457–463.
  • Landry ES, Mikkilineni S, Paharia M, McGaughey AJH. Droplet evaporation: a molecular dynamics investigation. J Appl Phys. 2007;102(12): 124301 (7 pages).
  • Desai S, Kaware R. Computational modeling of nanodroplet evaporation for scalable micro-/nano-manufacturing. IIE Trans. 2012;44(7):568–579.
  • Rytkonen A, Valkealahti S, Manninen M. Melting and evaporation of argon clusters. J Chem Phys. 1997;106(5):1888–1892.
  • Long LN, Micci MM, Wong BC. Molecular dynamics simulations of droplet evaporation. Comput Phys Commun. 1996;96(2–3):167–172.
  • Little JK. Simulation of droplet evaporation in supercritical environments using parallel molecular dynamics [dissertation]. Pennsylvania State University; 1996.
  • Nwobi OC, Long LN, Micci MM. Molecular dynamics studies of thermophysical properties of supercritical ethylene. J Thermophys Heat Transfer. 1999;13(3):351–354.
  • Rusanov AI, Brodskaya EN. Molecular-dynamics simulation of a small drop. J Colloid Interface Sci. 1977;62(3):542–555.
  • Powles JG, Fowler RF, Evans WAB. A new method for computing surface-tension using a drop of liquid. Chem Phys Lett. 1983;96(3):289–292.
  • Thompson SM, Gubbins KE, Walton J, Chantry RAR, Rowlinson JS. A molecular-dynamics study of liquid-drops. J Chem Phys. 1984;81(1):530–542.
  • Micci MM, Kaltz TL, Long LN. Molecular dynamics simulations of micrometer-scale droplet vaporization. Atomization Sprays. 2001;11(6):653–666.
  • Sumardiono S, Fischer J. Molecular simulations of droplet evaporation processes: adiabatic pressure jump evaporation. Int J Heat Mass Transfer. 2006;49(5–6):1148–1161.
  • Sumardiono S, Fischer J. Molecular simulations of droplet evaporation by heat transfer. Microfluid Nanofluid. 2007;3(2):127–140.
  • Walther JH, Koumoutsakos P. Molecular dynamics simulation of nanodroplet evaporation. J Heat Transfer – Trans ASME. 2001;123(4):741–748.
  • Consolini L, Aggarwal SK, Murad S. A molecular dynamics simulation of droplet evaporation. Int J Heat Mass Transfer. 2003;46(17):3179–3188.
  • Dumont RS, Jain S, Basile AG. Argon cluster evaporation dynamics. J Chem Phys. 1995;102(10):4227–4238.
  • Bhansali AP, Bayazitoglu Y, Maruyama S. Molecular dynamics simulation of an evaporating sodium droplet. Int J Therm Sci. 1999;38(1):66–74.
  • Kaltz TL. Supercritical vaporization of liquid oxygen droplets using molecular dynamics [dissertation]. Pennsylvania State University; 1998.
  • Kaltz TL, Long LN, Micci MM, Little JK. Supercritical vaporization of liquid oxygen droplets using molecular dynamics. Combust Sci Technol. 1998;136(1–6):279–301.
  • Kuo K. Principles of combustion. New York: John Wiley & Sons; 1986.
  • Hirschfelder JO, Curtiss CF, Bird RB. Molecular theory of gases and liquids. New York: John Wiley & Sons; 1954.
  • Poling BE, Prausnitz JM, O'Connell JP. The properties of gases and liquids. 5th ed. Boston (MA): McGraw-Hill Professional; 2000.
  • Stewart RB, Jacobsen RT. Thermodynamic properties of argon from the triple point to 1200 K with pressures to 1000 MPa. J Phys Chem Ref Data. 1989;18(2):639–798.
  • Vrabec J, Kedia GK, Fuchs G, Hasse H. Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties. Mol Phys. 2006;104(9):1509–1527.
  • Kryukov AP, Levashov VY, Sazhin SS. Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. Int J Heat Mass Transfer. 2004;47(12–13):2541–2549.
  • Wang ZJ, Chen M, Guo ZY. Modified transition state theory for evaporation and condensation. Chin Phys Lett. 2002;19(4):537–539.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York: Oxford University Press; 1989.
  • Sbragaglia M, Succi S. A note on the lattice Boltzmann method beyond the Chapman–Enskog limits. Europhys Lett. 2006;73(3):370–376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.