1,165
Views
28
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulations for the prediction of the dielectric spectra of alcohols, glycols and monoethanolamine

, , &
Pages 370-390 | Received 02 Feb 2015, Accepted 21 May 2015, Published online: 22 Jul 2015

References

  • Cherbański R, Molga E. Intensification of desorption processes by use of microwaves – an overview of possible applications and industrial perspectives. Chem Eng Process: Process Intensification. 2009;48:48–58. doi:10.1016/j.cep.2008.01.004.
  • Holtzer AM. The collected papers of Peter J. W. Debye. Interscience, New York-London, 1954. Xxi + 700 pp., $9.50. J Polym Sci. 1954;13:548–548. doi:10.1002/pol.1954.120137203.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341–351. doi:10.1063/1.1750906.
  • Davidson DW, Cole RH. Dielectric relaxation in glycerine. J Chem Phys. 1950;18:1417–1417. doi:10.1063/1.1747496.
  • Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210. doi:10.1016/0032-3861(67)90021-3.
  • de la Hoz A, Loupy A, editors. Microwave in organic synthesis. 3rd ed. Hobboken, NJ: Wiley-VCH, 2012.
  • Kremer F, Schonhals A, editors. Broadband dielectric spectroscopy. Berlin: Springer, 2002.
  • Ellison WJ. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25. THZ and the temperature range 0–100 °C. J Phys Chem Ref Data. 2007;36:1–18. doi:10.1063/1.2360986.
  • Kaatze U, Uhlendorf V. The Dielectric Properties of Water at Microwave Frequencies. Z Phys Chem Neue Fol. 1981;126:151–165. doi:10.1524/zpch.1981.126.2.151.
  • Kaatze U. Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data. 1989;34:371–374. doi:10.1021/je00058a001.
  • Barthel J, Bachhuber K, Buchner R, Hetzenauer H. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chem Phys Lett. 1990;165:369–373. doi:10.1016/0009-2614(90)87204-5.
  • Hasted JB, El Sabeh SHM. The dielectric properties of water in solutions. Faraday Soc. 1953;49:1003–1011. doi:10.1039/tf9534901003.
  • Davidson DW, Cole RH. Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys. 1951;19:1484–1490. doi:10.1063/1.1748105.
  • Cole RH, Davidson DW. High frequency dispersion in n-propanol. J Chem Phys. 1952;20:1389–1391. doi:10.1063/1.1700767.
  • Poley J. Microwave dispersion of some polar liquids, Technische Hogeschool te Delft. 1955.
  • Rampolla RW, Miller RC, Smyth CP. Microwave absorption and molecular structure in liquids. XXV. Measurements of dielectric constant and loss at 3.1-mm wavelength by an interferometric method. J Chem Phys. 1959;30:566–573. doi:10.1063/1.1729988.
  • Saxton JA, Bond RA, Coats GT, Dickinson RM. Dispersion at millimeter wavelengths in methyl and ethyl alcohols. J Chem Phys. 1962;37:2132–2138. doi:10.1063/1.1733434.
  • Buck DE. The dielectric spectra of ethanol-water mixtures in the microwave region. Cambridge, MA: Massachusetts Institute of Technology; 1965.
  • Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields: Application to liquid water. J Chem Phys. 1994;101:6141–6156. doi:10.1063/1.468398.
  • English NJ, MacElroy JMD. Atomistic simulations of liquid water using Lekner electrostatics. Mol Phys. 2002;100:3753–3769. doi:10.1080/0026897021000028438.
  • English NJ. Molecular dynamics simulations of liquid water using various long-range electrostatics techniques. Mol Phys. 2005;103:1945–1960. doi:10.1080/00268970500105003.
  • Neumann M, Steinhauser O. On the calculation of the frequency-dependent dielectric constant in computer simulations. Chem Phys Lett. 1983;102:508–513. doi:10.1016/0009-2614(83)87455-7.
  • Neumann M, Steinhauser O. Computer simulation and the dielectric constant of polarizable polar systems. Chem Phys Lett. 1984;106:563–569. doi:10.1016/0009-2614(84)85384-1.
  • English NJ, MacElroy JMD. Molecular dynamics simulations of microwave heating of water. J Chem Phys. 2003;118:1589–1592. doi:10.1063/1.1538595.
  • English NJ, MacElroy JMD. Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields. J Chem Phys. 2003;119:11806–11813. doi:10.1063/1.1624363.
  • English NJ. Molecular dynamics simulations of microwave effects on water using different long-range electrostatics methodologies. Mol Phys. 2006;104:243–253. doi:10.1080/14733140500352322.
  • Petravic J, Delhommelle J. Conductivity of molten sodium chloride in an alternating electric field. J Chem Phys. 2003;119:8511–8518. doi:10.1063/1.1613256.
  • English NJ, Sorescu DC, Karl JK. Effects of an external electromagnetic field on rutile Tio2: A molecular dynamics study. J Phys Chem Solids. 2006;67:1399–1409. doi:10.1016/j.jpcs.2006.01.101.
  • Desgranges C, Delhommelle J. Estimating the conductivity of a nanoconfined liquid subjected to an experimentally accessible external field. Mol Simulat. 2008;34:177–181. doi:10.1080/08927020801930604.
  • English NJ, Mooney DA. Very different responses to electromagnetic fields in binary ionic liquid-water solutions. J Phys Chem B. 2009;113:10128–10134. doi:10.1021/jp902500m.
  • English NJ, Mooney DA. Electromagnetic field effects on binary dimethylimidazolium-based ionic liquid/water solutions. Phys Chem Chem Phys. 2009;11:9370–9374. doi:10.1039/b910462c.
  • English NJ, Mooney DA, O'Brien SW. Electrical conductivity and dipolar relaxation of binary dimethylimidazolium chloride-water solutions: A molecular dynamics study. J Mol Liq. 2010;157:163–167. doi:10.1016/j.molliq.2010.10.001.
  • English NJ, Mooney DA, O'Brien S. Ionic liquids in external electric and electromagnetic fields: a molecular dynamics study. Mol Phys. 2011;109:625–638. doi:10.1080/00268976.2010.544263.
  • Matyushov DV. On the theory of dielectric spectroscopy of protein solutions. J Phys Condensed Matter. 2012;24:325105. doi:10.1088/0953-8984/24/32/325105.
  • Heyden M, Tobias DJ, Matyushov DV. Terahertz absorption of dilute aqueous solutions. J Chem Phys. 2012;137:235103. doi:10.1063/1.4772000.
  • Martin DR, Matyushov DV. Hydration shells of proteins probed by depolarized light scattering and dielectric spectroscopy: Orientational structure is significant, positional structure is not. J Chem Phys. 2014;141:22D501. doi:10.1063/1.4895544.
  • Sweatman MB. Equilibrium behaviour of a novel gas separation process, with application to carbon capture. Chem Eng Sci. 2010;65:3907–3913. doi:10.1016/j.ces.2010.03.016.
  • Sweatman MB. Improving the equilibrium performance of active carbons for separation processes by co-adsorption with low pressure solvent: application to carbon capture. Adsorption. 2011;17:723–737. doi:10.1007/s10450-011-9351-5.
  • Berendsen HJC, Postma JPM, Gunsterenvan WF, Hermans J. Intermolecular forces. Dordrecht: Reidel D Publishing Company; 1981. p. 331–342.
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi:10.1063/1.445869.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi:10.1021/j100308a038.
  • Ferguson DM. Parameterization and evaluation of a flexible water model. J Comput Chem. 1995;16:501–511. doi:10.1002/jcc.540160413.
  • Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water model with improved liquid-state properties. J Chem Phys. 2006;124:024503. doi:10.1063/1.2136877.
  • Chen B, Potoff JJ, Siepmann JI. Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J Phys Chem B. 2001;105:3093–3104. doi:10.1021/jp003882x.
  • Stubbs JM, Potoff JJ, Siepmann JI. Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J Phys Chem B. 2004;108:17596–17605. doi:10.1021/jp049459w.
  • Jorgensen WL, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA. 2005;102:6665–6670. doi:10.1073/pnas.0408037102.
  • Caleman C, Maarenvan PJ, Hong M, Hub JS, Costa LT, Spoelvan der D. Force field benchmark of organic liquids: density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J Chem Theory Comput. 2012;8:61–74. doi:10.1021/ct200731v.
  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174. doi:10.1002/jcc.20035.
  • Da silva EF, Kuznetsova T, Kvamme B, Merz KM. Molecular dynamics study of ethanolamine as a pure liquid and in aqueous solution. J Phys Chem B. 2007;111:3695–3703. doi:10.1021/jp068227p.
  • Hess B, Kutzner C, Spoelvan der D, Lindahl E. GROMACS 4:  algorithms for highly efficient, load-balanced, and scalable Molecular Simulation. J Chem Theory Comput. 2008;4:435–447. doi:10.1021/ct700301q.
  • Hockney R, Goel S, Eastwood J. Quiet high-resolution computer models of a plasma. J Comput Phys. 1974;14:148–158. doi:10.1016/0021-9991(74)90010-2.
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268. doi:10.1080/00268978400101201.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697. doi:10.1103/PhysRevA.31.1695.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190. doi:10.1063/1.328693.
  • Nosé S, Klein M. Constant pressure molecular dynamics for molecular systems. Mol Phys. 1983;50:1055–1076. doi:10.1080/00268978300102851.
  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12 < 1463:AID-JCC4>3.0.CO;2-H.
  • Darden T, York D, Pedersen L. Particle mesh ewald: an N⋅log(N) method for ewald sums in large systems. J Chem Phys. 1993;98:10089–10092. doi:10.1063/1.464397.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Gloucestershire, UK: Clarendon Press, 1989.
  • Zhang X, Jian C. Liquid-liquid equilibrium for the ternary system methanol+acrylonitrile+water. J Chem Eng Data. 2012;57:142–147. doi:10.1021/je2009208.
  • Orekhova Z, Ben-Hamo M, Manzurola E, Apelblat A. Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid. J Solution Chem. 2005;34:687–700. doi:10.1007/s10953-005-4493-2.
  • Doi H, Tamura K, Murakami S. Thermodynamic properties of aqueous solution of 2-isobutoxyethanol ATT =  (293.15, 298.15, and 303.15) K, below and above lcst. J Chem Thermodyn. 2000;32:729–741. doi:10.1006/jcht.1999.0645.
  • Kolker AM, Safonova LP. Molar heat capacities of the (water+acetonitrile) mixtures at T = (283.15, 298.15, 313.15, and 328.15)K. J Chem Thermodyn. 2010;42:1209–1212. doi:10.1016/j.jct.2010.04.019.
  • Antosik M, Gałka M, Malanowski SK. Vapor − liquid equilibrium in a ternary system cyclohexane + ethanol + water. J Chem Eng Data. 2004;49:7–10. doi:10.1021/je025621h.
  • Marcus Y. The properties of solvents. Hobboken, NJ: Wiley, 1998.
  • Begum SK, Clarke RJ, Ahmed MS, Begum S, Saleh MA. Densities, viscosities, and surface tensions of the system water+diethylene glycol. J Chem Eng Data. 2011;56:303–306. doi:10.1021/je1009976.
  • Egorov D, Makarov GI. The bulk properties of ethylene glycol - dimethylsulfoxide mixtures over the temperture range 278-323 K at p = 0.1 MPa, Zh. fiz. khim+82. 2008. p. 1982–1988.
  • M.G. Technische Hochschule Carl Schorlemmer Leuna-Merseburg, Unpublished data; 1989.
  • Yang C, Ma P, Jing F, Tang D. Excess molar volumes, viscosities, and heat capacities for the mixtures of ethylene glycol+water from 273.15 K to 353.15 K. J Chem Eng Data. 2003;48:836–840. doi:10.1021/je020140j.
  • Verevkin SP. Determination of vapor pressures and enthalpies of vaporization of 1,2-alkanediols. Fluid Phase Equilibr. 2004;224:23–29. doi:10.1016/j.fluid.2004.05.010.
  • Rodrigues M, Francesconi A. Experimental study of the excess molar volumes of binary and ternary mixtures containing water + (1,2-ethanediol, or 1,2-propanediol, or 1,3-propanediol, or 1,2-butanediol) + (1-N-butyl-3-methylimidazolium bromide) at 298.15 K and atmospheric pressure. J Sol Chem. 2011;40:1863–1873. doi:10.1007/s10953-011-9756-5.
  • Zarei HA, Asadi S, Iloukhani H. Temperature dependence of the volumetric properties of binary mixtures of (1-propanol, 2-propanol and 1,2-propanediol) at ambient pressure (81.5 KPA). J Mol Liq. 2008;141:25–30. doi:10.1016/j.molliq.2008.02.006.
  • Yang C, Ma P, Xia S. Heat capacity of glycol determined by differential scanning calorimeter. Tianjin Daxue Xuebao. 2003;36:192–196.
  • Belda Maximino R. Viscosity and density of binary mixtures of alcohols and polyols with three carbon atoms and water: equation for the correlation of viscosities of binary mixtures. Phys Chem Liq. 2009;47:515–529. doi:10.1080/00319100802372114.
  • Yaws CL. Yaws' Handbook of thermodynamic and physical properties of chemical compounds. New York: McGraw-Hill; 2003.
  • Bastos M, Nilsson SO, Silva MDR, Silva MAR, Wadsö I. Thermodynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at 298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K. J Chem Thermodyn. 1988;20:1353–1359. doi:10.1016/0021-9614(88)90173-5.
  • Lide DR. CRC handbook of chemistry and physics. 90th ed. Boca Raton, FL: CRC Press; 2009.
  • Kartsev V, Rodnikova M, Tsepulin V, Markova V. Piezometry and densitometry of aqueous solutions of diamines, aminoalcohols, and diols. II. Solutions of monoethanolamine and diols. Russ J Phys Chem. 1988;62:1152–1153.
  • Liessmann G, Schmidt W, Reiffarth S. Recommended thermophysical data. Data compilation of the Saechsische Olefinwerke Boehlen. Germany; 1995.
  • DIPPR Design Institute for Physical Properties Research, AIChE. 2010.
  • Chialvo AA, Moucka F, Vlcek L, Nezbeda I. Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization. J Phys Chem B. 2015;119:5010–5019  PMID: 25803267.10.1021/acs.jpcb.5b00595.
  • Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys. 2000;2:4740–4742. doi:10.1039/b005319h.
  • Badyal YS, Saboungi M, Price DL, Shastri SD, Haeffner DR, Soper AK. Electron distribution in water. J Chem Phys. 2000;112:9206–9208. doi:10.1063/1.481541.
  • Gente G, La Mesa C. Water-trifluoroethanol mixtures: some physicochemical properties. J Solution Chem. 2000;29:1159–1172. doi:10.1023/A:1005147318013.
  • Holz M, Mao Xa, Seiferling D, Sacco A. Experimental study of dynamic isotope effects in molecular liquids: detection of translation-rotation coupling. J Chem Phys. 1996;104:669–679. doi:10.1063/1.470863.
  • Hanai T, Koizumi N, Gotoh R. Temperature dependence of dielectric constants and dipole moments in polar liquids. Bull Inst Chem Res, Kyoto Univ. 1961;39:195–201.
  • Kinart CM, Klimczak M. Thermodynamic and structural properties of binary mixtures of some glycols with 2-butoxyethanol at T = (293.15, 298.15 and 303.15) K. J Mol Liq. 2009;148:132–139. doi:10.1016/j.molliq.2009.07.009.
  • Mitchell M, Tyrrell HJV. Diffusion of benzene, phenol and resorcinol in propane-1,2-diol, and the validity of the Stokes-Einstein equation. J Chem Soc, Faraday Trans. 1972;68:385–399. doi:10.1039/f29726800385.
  • Gmehling J, Krafczyk J, Ahlers J, Nebig S, Hunecker I, Eisel M, Fischer D, Krentscher B, Beyer K. Pure compound data from DDB.
  • Sastry NV, Patel MC. Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for alkyl (methyl, ethyl, butyl, and isoamyl) acetates+glycols at different temperatures. J Chem Eng Data. 2003;48:1019–1027. doi:10.1021/je0340248.
  • D'Errico G, Ortona O, Capuano F, Vitagliano V. Diffusion coefficients for the binary system glycerol + water at 25 °C. A velocity correlation study. J Chem Eng Data. 2004;49:1665–1670. doi:10.1021/je049917u.
  • Kinart CM, Kinart WJ. Physicochemical properties of glycerol-formamide liquid mixtures and their assumed internal structures. Phys Chem Liq. 1996;33:159–170. doi:10.1080/00319109608039817.
  • Rodnikova M, Privalov V, Samigullin F, Zhakova V. Rotational and progressive molecules mobility of certain aminoalcohols, Zh. Fiz. Khim+ 68. 1994;68:2235–2238.
  • Undre P, Helambe S, Jagdale S, Khirade P, Mehrotra S. Study of solute-solvent interaction through dielectrics properties of N,N-dimethylacetamide in ethanolamine. J Mol Liq. 2008;137:147–151. doi:10.1016/j.molliq.2007.06.004.
  • Gereben O, Pusztai L. On the accurate calculation of the dielectric constant from molecular dynamics simulations: The case of SPC/E and SWM4-DP water. Chem Phys Lett. 2011;507:80–83. doi:10.1016/j.cplett.2011.02.064.
  • Raabe G, Sadus RJ. Molecular dynamics simulation of the dielectric constant of water: The effect of bond flexibility. J Chem Phys. 2011;134:234501. doi:10.1063/1.3600337.
  • Schneider U, Lunkenheimer P, Brand R, Loidl A. Dielectric and far-infrared spectroscopy of glycerol. J Non-Cryst Solids. 1998;235–237:173–179. doi:10.1016/S0022-3093(98)00561-4.
  • Lunkenheimer P, Schneider U, Brand R, Loid A. Glassy dynamics. Contemp Phys. 2000;41:15–36. doi:10.1080/001075100181259.
  • Horikoshi S, Matsuzaki S, Mitani T, Serpone N. Microwave frequency effects on dielectric properties of some common solvents and on microwave-assisted syntheses: 2-Allylphenol and the C12-C2-C12 Gemini surfactant. Radiat Phys Chem. 2012;81:1885–1895. doi:10.1016/j.radphyschem.2012.07.011.
  • Zahn M, Ohki Y, Fenneman DB, Gripshover R, Gehman J, VH. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc IEEE. 1986;74:1182–1221. doi:10.1109/PROC.1986.13611.
  • Bartoš J, Šauša O, Köhler M, Švajdlenková H, Lunkenheimer P, Krištiak J, Loidl A. Positron annihilation and broadband dielectric spectroscopy: a series of propylene glycols. J Non-Cryst Solids. 2011;357:376–384  384 6th International Discussion Meeting on Relaxation in Complex Systems.10.1016/j.jnoncrysol.2010.07.030.
  • Lunkenheimer P, Pimenov A, Schiener B, Böhmer R, Loidl A. High-frequency dielectric spectroscopy on glycerol. Europhys Lett. 1996;33:611–616. doi:10.1209/epl/i1996-00387-4.
  • Lunkenheimer P, Pimenov A, Dressel M, Goncharov YG, Böhmer R, Loidl A. Fast dynamics of glass-forming glycerol studied by dielectric spectroscopy. Phys Rev Lett. 1996;77:318–321. doi:10.1103/PhysRevLett.77.318.
  • Patil A, Pawar V. Microwave dielectric spectra and molecular interaction in a binary mixture of ethanolamine with diethanolamine. J Mol Liq. 2013;188:1–4. doi:10.1016/j.molliq.2013.09.007.
  • Patil A, Shinde G, Pawar V. Dielectric relaxation study of hydrogen bonded structures in ethanolamine with diethanolamine using tdr technique. J Mol Liq. 2012;168:42–46. doi:10.1016/j.molliq.2012.01.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.