509
Views
5
CrossRef citations to date
0
Altmetric
Articles

Interfacial adhesion properties of graphene sheet on nanoscale corrugated surface: a molecular dynamics simulation study

, , , &
Pages 405-412 | Received 10 Apr 2015, Accepted 28 May 2015, Published online: 25 Jul 2015

References

  • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. doi:10.1126/science.1157996.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197–200. doi:10.1038/nature04233.
  • Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnol. 2009;4(12):861–867. doi:10.1038/nnano.2009.267.
  • Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano. 2010;4(1):380–386. doi:10.1021/nn901221k.
  • Chou S, Wang J, Choucair M, Liu H, Stride JA, Dou S. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun. 2010;12(2):303–306. doi:10.1016/j.elecom.2009.12.024.
  • Chen S, Brown L, Levendorf M, Cai W, Ju S, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano. 2011;5(2):1321–1327. doi:10.1021/nn103028d.
  • Lee J, Ahn H, Yoon J, Jang J. Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Phys Chem Chem Phys. 2012;14(22):7938–7943. doi:10.1039/c2cp40810d.
  • Mi Y, Wang Z, Liu X, Yang S, Wang H, Ou J, Li Z, Wang J. A simple and feasible in-situ reduction route for preparation of graphene lubricant films applied to a variety of substrates. J Mater Chem. 2012;22(16):8036–8042. doi:10.1039/c2jm16656a.
  • Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI. Graphene: corrosion-inhibiting coating. ACS Nano. 2012;6(2):1102–1108. doi:10.1021/nn203507y.
  • Kaganer B, Jenichen G, Paris KH, Ploog O, Konovalov P, Mikulík S, Arai VM. Strain in buried quantum wires: analytical calculations and X-ray diffraction study. Phys Rev B. 2002;66(3):035310. doi:10.1103/PhysRevB.66.035310.
  • Tokuda N, Murata M, Hojo D, Yamabe K. SiO2 surface and SiO2/Si interface topography change by thermal oxidation. Jpn J Appl Phys. 2001;40(Part 1, No. 8):4763–4768. doi:10.1143/JJAP.40.4763.
  • Kolesnikov AL, Klavsyuk AM, Saletsky SV. Vacancy formation on stepped Cu(100) accelerated with STM: molecular dynamics and kinetic Monte Carlo simulations. Phys Rev B. 2009;80(24):245412. doi:10.1103/PhysRevB.80.245412.
  • Emtsev KV, Speck R, Seyller T, Ley L, Riley SA, Weber HB, Lauffer P. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys Rev B. 2008;77(15):155426. doi:10.1103/PhysRevB.77.155303.
  • Gao J, Yip J, Zhao J, Yakobson BI, Ding F. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge. J Am Chem Soc. 2011;133(13):5009–5015. doi:10.1021/ja110927p.
  • Zhang Y, Gao T, Xie S, Dai B, Fu L, Gao Y, Chen Y, Liu M, Liu Z. Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: a scanning tunneling microscopy study. Nano Res. 2012;5(6):402–411. doi:10.1007/s12274-012-0221-6.
  • Coraux J, N‘diaye AT, Busse C, Michely T. Structural coherency of graphene on Ir(111). Nano Lett. 2008;8(2):565–570. doi:10.1021/nl0728874.
  • Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, Weiller BH, Gimzewski JK. Continuity of graphene on polycrystalline copper. Nano Lett. 2011;11(1):251–256. doi:10.1021/nl1036403.
  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 2012;336(6077):61–64. doi:10.1126/science.1217654.
  • Xia L, Ponson G, Ravichandran K, Bhattacharya S. Toughening and asymmetry in peeling of heterogeneous adhesives. Phys Rev Lett. 2012;108(19):196101. doi:10.1103/PhysRevLett.108.196101.
  • Das S, Lahiri D, Lee D, Agarwal A, Choi W. Measurements of the adhesion energy of graphene to metallic substrates. Carbon. 2013;59:121–129. doi:10.1016/j.carbon.2013.02.063.
  • Neek-Amal M, Peeters FM. Strain-engineered graphene through a nanostructured substrate. I. Deformations. Phys Rev B. 2012;85(19):195445. doi:10.1103/PhysRevB.85.195445.
  • Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED. Atomic structure of graphene on SiO2. Nano Lett. 2007;7(6):1643–1648. doi:10.1021/nl070613a.
  • Stöberl U, Wurstbauer U, Wegscheider W, Weiss D, Eroms J. Morphology and flexibility of graphene and few-layer graphene on various substrates. Appl Phys Lett. 2008;93:051906.
  • Scharfenberg S, Rocklin DZ, Chialvo C, Weaver RL, Goldbart PM, Mason N. Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl Phys Lett. 2011;98(9):091908. doi:10.1063/1.3553228.
  • Gao W, Huang R. Effect of surface roughness on adhesion of graphene membranes. J Phys D Appl Phys. 2011;44(45):452001. doi:10.1088/0022-3727/44/45/452001.
  • Chen H, Chen S. The peeling behaviour of a graphene sheet on a nano-scale corrugated surface. J Phys D Appl Phys. 2013;46(43):435305. doi:10.1088/0022-3727/46/43/435305.
  • He Y, Yu W, Ouyang G. Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Phys Chem Chem Phys. 2014;16(23):11390–11397. doi:10.1039/c4cp00633j.
  • Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014;14(9):5044–5051. doi:10.1021/nl5016552.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi:10.1006/jcph.1995.1039.
  • Lindsay L, Broido DA. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B. 2010;81(20):205–441. doi:10.1103/PhysRevB.81.205441.
  • Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon. 2013;63:460–470. doi:10.1016/j.carbon.2013.07.017.
  • Huang S, Mainardi DS, Balbuena PB. Structure and dynamics of graphite-supported bimetallic nanoclusters. Surf Sci. 2003;545(3):163–179. doi:10.1016/j.susc.2003.08.050.
  • Yamamoto M, Pierre-Louis O, Huang J, Fuhrer MS, Einstein TL, Cullen WG. “The princess and the pea” at the nanoscale: wrinkling and delaminatixon of graphene on nanoparticles. Phys Rev X. 2012;2:041018.
  • Chen H, Yao Y, Chen S. Adhesive contact between a graphene sheet and a nano-scale corrugated surface. J Phys D Appl Phys. 2013;46:205–303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.