1,474
Views
122
CrossRef citations to date
0
Altmetric
Articles

Unconstrained enhanced sampling for free energy calculations of biomolecules: a review

&
Pages 1046-1055 | Received 01 Sep 2015, Accepted 14 Nov 2015, Published online: 05 Jul 2016

References

  • McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267:585–590.10.1038/267585a0
  • Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002;9:646–652.10.1038/nsb0902-646
  • Miao Y, Yi Z, Cantrell C, Glass Dennis C, Baudry J, Jain N, Smith Jeremy C. Coupled flexibility change in cytochrome P450cam substrate binding determined by neutron scattering, NMR, and molecular dynamics simulation. Biophys. J. 2012;103:2167–2176.10.1016/j.bpj.2012.10.013
  • Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL, Arkin IT, Jensen MO, Xu H, Trbovic N, Friesner RA, Iii AG, Shaw DE. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B. 2008;112:6155–6158. doi:10.1021/jp077018h.
  • Yang S, Salmon L. A-Hashimi HM. Measuring similarity between dynamic ensembles of biomolecules. Nat. Methods. 2014;11:552–554. doi:10.1038/nmeth.2921.
  • Smith J, Kuczera K, Karplus M. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc. Nat. Acad. Sci. 1990;87:1601–1605. doi:10.1073/pnas.87.4.1601.
  • Miao YL, Yi Z, Glass DC, Hong L, Tyagi M, Baudry J, Jain NT, Smith JC. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein. J. Am. Chem. Soc. 2012;134:19576–19579. doi:10.1021/ja3097898.
  • Chan KY, Trabuco LG, Schreiner E, Schulten K. Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method. Biopolymers. 2012;134:678–686. doi:10.1002/bip.22042.
  • Trabuco LG, Villa E, Mitra K, Frank J, Schulten K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure. 2008;97:673–683. doi:10.1016/j.str.2008.03.005.
  • Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-folding proteins fold. Science. 2011;334:517–520. doi:10.1126/science.1208351.
  • Brunger AT, Kuriyan J, Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987;235:458–460. doi:10.1126/science.235.4787.458.
  • McGreevy R, Singharoy A, Li Q, Zhang J, Xu D, Perozo E, Schulten K. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2014;70:2344–2355.10.1107/S1399004714013856
  • Torda AE, van Gunsteren WF. The refinement of NMR structures by molecular dynamics simulation. Comput. Phys. Commun. 1991;62:289–296.10.1016/0010-4655(91)90101-P
  • Lehtivarjo J, Tuppurainen K, Hassinen T, Laatikainen R, Perakyla M. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction. J. Biomol. NMR. 2012;52:257–267. doi:10.1007/s10858-012-9609-6.
  • Kollman P. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 1993;93:2395–2417.10.1021/cr00023a004
  • Vanden-Eijnden E. Some recent techniques for free energy calculations. J. Comput. Chem. 2009;30:1737–1747.10.1002/jcc.v30:11
  • Christ CD, Mark AE, van Gunsteren WF. Basic ingredients of free energy calculations: a review. J. Comput. Chem. 2010;31:1569–1582.
  • Pohorille A, Jarzynski C, Chipot C. Good practices in free-energy calculations. J. Phys. Chem. B. 2010;114:10235–10253. doi:10.1021/jp102971x.
  • Johnston JM, Filizola M. Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Curr. Opin. Struct. Biol. 2011;21:552–558.10.1016/j.sbi.2011.06.008
  • Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature. 2007;450:964–972.10.1038/nature06522
  • Lewandowski JR, Halse ME, Blackledge M, Emsley L. Direct observation of hierarchical protein dynamics. Science. 2015;348:578–581. doi:10.1126/science.aaa6111.
  • Abrams C, Bussi G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy. 2014;16:163–199.
  • Spiwok V, Sucur Z, Hosek P. Enhanced sampling techniques in biomolecular simulations. Biotechnol. Adv. 2015;33:1130–1140. doi:10.1016/j.biotechadv.2014.11.011.
  • Dellago C, Bolhuis PG. Transition path sampling and other advanced simulation techniques for rare events. Adv. Comput. Simul. Approach. Soft Matter Sci. III. 2009;221:167–233.10.1007/978-3-540-87706-6
  • Gao YQ, Yang LJ, Fan YB, Shao Q. Thermodynamics and kinetics simulations of multi-time-scale processes for complex systems. Int. Rev. Phys. Chem. 2008;27:201–227. doi:10.1080/01442350801920334.
  • Liwo A, Czaplewski C, Oldziej S, Scheraga HA. Computational techniques for efficient conformational sampling of proteins. Curr. Opin. Struct. Biol. 2008;18:134–139. doi:10.1016/j.sbi.2007.12.001.
  • Christen M, van Gunsteren WF. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: a review. J. Comput. Chem. 2008;29:157–166.10.1002/(ISSN)1096-987X
  • Kästner J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011;1:932–942.10.1002/wcms.66
  • Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 1977;23:187–199.10.1016/0021-9991(77)90121-8
  • Ciccotti G, Kapral R, Vanden-Eijnden E. Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem. 2005;6:1809–1814.
  • Darve E, Rodriguez-Gomez D, Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J. Chem. Phys. 2008;128:144120.10.1063/1.2829861
  • Darve E, Pohorille A. Calculating free energies using average force. J. Chem. Phys. 2001;115:9169–9183.
  • Laio A, Parrinello M. Escaping free-energy minima. Proc. Nat. Acad. Sci. 2002;99:12562–12566.10.1073/pnas.202427399
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008;71:126601.10.1088/0034-4885/71/12/126601
  • Grubmüller H. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E. 1995;52:2893–2906.10.1103/PhysRevE.52.2893
  • Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G. String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 2006;125:024106.10.1063/1.2212942
  • Pan AC, Sezer D, Roux B. Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B. 2008;112:3432–3440.10.1021/jp0777059
  • Knight JL, Brooks CL. λ-Dynamics free energy simulation methods. J. Comput. Chem.2009;30:1692–1700.10.1002/jcc.v30:11
  • Rosso L, Tuckerman ME. An adiabatic molecular dynamics method for the calculation of free energy profiles. Mol. Simul. 2002;28:91–112.10.1080/08927020211977
  • Abrams CF, Vanden-Eijnden E. Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Proc. Nat. Acad. Sci. 2010;107:4961–4966.10.1073/pnas.0914540107
  • Schlitter J, Engels M, Kruger P, Jacoby E, Wollmer A. Targeted molecular dynamics simulation of conformational change-application to the T ↔ R transition in insulin. Mol. Simul. 1993;10:291–308.10.1080/08927029308022170
  • Ferrara P, Apostolakis J, Caflisch A. Targeted molecular dynamics simulations of protein unfolding. J. Phys. Chem. B. 2000;104:4511–4518.10.1021/jp9943878
  • Schlitter J, Engels M, Kruger P. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graphics. 1994;12:84–89.10.1016/0263-7855(94)80072-3
  • Zheng LQ, Chen MG, Yang W. Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proc. Nat. Acad. Sci. 2008;105:20227–20232.10.1073/pnas.0810631106
  • Zheng LQ, Chen MG, Yang W. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling. J. Chem. Phys. 2009;130:234105.10.1063/1.3153841
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999;314:141–151.10.1016/S0009-2614(99)01123-9
  • Okamoto Y. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graphics Modell. 2004;22:425–439.
  • Hansmann UHE. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 1997;281:140–150.10.1016/S0009-2614(97)01198-6
  • Wu X, Wang S. Crossing the time scale of protein folding through self-guided molecular dynamics simulation. J. Mol. Graphics Modell. 1998;16:290–290.
  • Wu XW, Wang SM. Self-guided molecular dynamics simulation for efficient conformational search. J. Phys. Chem. B. 1998;102:7238–7250.10.1021/jp9817372
  • Wu XW, Brooks BR. Self-guided Langevin dynamics simulation method. Chem. Phys. Lett. 2003;381:512–518.10.1016/j.cplett.2003.10.013
  • Wu X, Brooks BR, Vanden-Eijnden E. Self-guided Langevin dynamics via generalized Langevin equation. J. Comput. Chem. 2015;. doi:10.1002/jcc.24015.
  • Li H, Min D, Liu Y, Yang W. Essential energy space random walk via energy space metadynamics method to accelerate molecular dynamics simulations. J. Chem. Phys. 2007;127:094101.10.1063/1.2769356
  • Zheng LQ, Yang W. Essential energy space random walks to accelerate molecular dynamics simulations: convergence improvements via an adaptive-length self-healing strategy. J. Chem. Phys. 2008;129:014105.10.1063/1.2949815
  • Lv C, Zheng LQ, Yang W. Generalized essential energy space random walks to more effectively accelerate solute sampling in aqueous environment. J. Chem. Phys. 2012;136:044103.10.1063/1.3678220
  • Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004;120:11919–11929.10.1063/1.1755656
  • Miao Y, Feher VA, McCammon JA. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 2015;11:3584–3595.10.1021/acs.jctc.5b00436
  • Marinari E, Parisi G. Simulated tempering: a new Monte Carlo scheme. Europhys. Lett. 1992;19:451–458.10.1209/0295-5075/19/6/002
  • Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsovvelyaminov PN. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J. Chem. Phys. 1992;96:1776–1783.10.1063/1.462133
  • Berg BA, Neuhaus T. Multicanonical algorithms for first order phase transitions. Phys. Lett. B. 1991;267:249–253.10.1016/0370-2693(91)91256-U
  • Sugita Y, Okamoto Y. Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem. Phys. Lett. 2000;329:261–270.10.1016/S0009-2614(00)00999-4
  • Mitsutake A, Sugita Y, Okamoto Y. Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides. I. Formulation and benchmark test. J. Chem. Phys. 2003;118:6664–6675.10.1063/1.1555847
  • Mitsutake A, Okamoto Y. Replica-exchange simulated tempering method for simulations of frustrated systems. Chem. Phys. Lett. 2000;332:131–138.10.1016/S0009-2614(00)01262-8
  • Ishikawa Y, Sugita Y, Nishikawa T, Okamoto Y. Ab initio replica-exchange Monte Carlo method for cluster studies. Chem. Phys. Lett. 2001;333:199–206.10.1016/S0009-2614(00)01342-7
  • Sugita Y, Kitao A, Okamoto Y. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 2000;113:6042–6051.10.1063/1.1308516
  • Murata K, Sugita Y, Okamoto Y. Molecular dynamics simulations of DNA dimers based on replica-exchange umbrella sampling. I. Test of sampling efficiency. J. Theor. Comput. Chem. 2005;4:411–432.
  • Curuksu J, Zacharias M. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. J. Chem. Phys. 2009;130:104110.10.1063/1.3086832
  • Meli M, Colombo G. A Hamiltonian replica exchange molecular dynamics (MD) method for the study of folding, based on the analysis of the stabilization determinants of proteins. Int. J. Mol. Sci. 2013;14:12157–12169.10.3390/ijms140612157
  • Nishikawa T, Ohtsuka H, Sugita Y, Mikami M, Okamoto Y. Replica – exchange Monte Carlo method for Ar fluid. Prog. Theor. Phys. Suppl. 2000:270–271.10.1143/PTPS.138.270
  • Mitsutake A, Sugita Y, Okamoto Y. Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides. II. Application to a more complex system. J. Chem. Phys. 2003;118:6676–6688.10.1063/1.1555849
  • La Penna G, Mitsutake A, Masuya M, Okamoto Y. Molecular dynamics of C-peptide of ribonuclease A studied by replica-exchange Monte Carlo method and diffusion theory. Chem. Phys. Lett. 2003;380:609–619.10.1016/j.cplett.2003.07.031
  • Pitera JW, Swope W. Understanding folding and design: replica-exchange simulations of ‘Trp-cage’ miniproteins. Proc. Nat. Acad. Sci. 2003;100:7587–7592.10.1073/pnas.1330954100
  • Sugita Y, Okamoto Y. An analysis on protein folding problem by replica-exchange method. Prog. Theor. Phys. Suppl. 2000:402–403.10.1143/PTPS.138.402
  • Nguyen PH, Stock G, Mittag E, Hu CK, Li MS. Free energy landscape and folding mechanism of a β-hairpin in explicit water: a replica exchange molecular dynamics study. Proteins: Struct. Funct. Bioinf. 2005;61:795–808.10.1002/prot.20696
  • Kannan S, Zacharias M. Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins: Struct. Funct. Bioinf. 2010;78:2809–2819.10.1002/prot.v78:13
  • Murata K, Sugita Y, Okamoto Y. Free energy calculations for DNA base stacking by replica-exchange umbrella sampling. Chem. Phys. Lett. 2004;385:1–7.10.1016/j.cplett.2003.10.159
  • Mitsutake A, Okamoto Y. Replica-exchange extensions of simulated tempering method. J. Chem. Phys. 2004;121:2491–2504.10.1063/1.1766015
  • Wu XW, Damjanovic A, Brooks BR. Efficient and unbiased sampling of biomolecular systems in the canonical ensemble: a review of self-guided Langevin dynamics. Adv. Chem. Phys. 2012;150:255–326.
  • Wu XW, Brooks BR. Force-momentum-based self-guided Langevin dynamics: a rapid sampling method that approaches the canonical ensemble. J. Chem. Phys. 2011;135:204101.10.1063/1.3662489
  • Sheng YB, wang W, Chen P. Adsorption of an ionic complementary peptide on the hydrophobic graphite surface. J. Phys. Chem. C. 2010;114:454–459.10.1021/jp908629g
  • Wu XW, Subramaniam S, Case DA, Wu KW, Brooks BR. Targeted conformational search with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron microscopic density maps. J. Struct. Biol. 2013;183:429–440.10.1016/j.jsb.2013.07.006
  • Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa). J. Mol. Model. 2009;15:897–911.10.1007/s00894-008-0444-3
  • Yang CY, Nikolovska-Coleska Z, Li P, Roller P, Wang SM. Solution conformations of wild-type and mutated Bak BH3 peptides via dynamical conformational sampling and implication to their binding to antiapoptotic Bcl-2 proteins. J. Phys. Chem. B. 2004;108:1467–1477.10.1021/jp036009f
  • Varady J, Wu XW, Wang SM. Competitive and reversible binding of a guest molecule to its host in aqueous solution through molecular dynamics simulation: benzyl alcohol/β-cyclodextrin system. J. Phys. Chem. B. 2002;106:4863–4872.10.1021/jp0131469
  • Choudhary D, Clancy P. Application of accelerated molecular dynamics schemes to the production of amorphous silicon. J. Chem. Phys. 2005;122:154509.
  • Hamelberg D, de Oliveira CAF ,McCammon JA. Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J. Chem. Phys. 2007;127:155102.10.1063/1.2789432
  • Markwick PRL, McCammon JA. Studying functional dynamics in bio-molecules using accelerated molecular dynamics. PCCP. 2011;13:20053–20065.10.1039/c1cp22100k
  • Sinko W, de Oliveira CAF ,Pierce LCT, McCammon JA. Protecting high energy barriers: a new equation to regulate boost energy in accelerated molecular dynamics simulations. J. Chem. Theory Comput. 2012;8:17–23.10.1021/ct200615k
  • Markwick PRL, Pierce LCT, Goodin DB, McCammon JA. Adaptive accelerated molecular dynamics (Ad-AMD) revealing the molecular plasticity of P450cam. J. Phys. Chem. Lett. 2011;2:158–164.10.1021/jz101462n
  • Doshi U, Hamelberg D. Improved statistical sampling and accuracy with accelerated molecular dynamics on rotatable torsions. J. Chem. Theory Comput. 2012;8:4004–4012.10.1021/ct3004194
  • Wereszczynski J, McCammon JA. Using selectively applied accelerated molecular dynamics to enhance free energy calculations. J. Chem. Theory Comput. 2010;6:3285–3292.10.1021/ct100322t
  • de Oliveira CAF, Hamelberg D, McCammon JA. Coupling accelerated molecular dynamics methods with thermodynamic integration simulations. J. Chem. Theory Comput. 2008;4:1516–1525.10.1021/ct800160q
  • Fajer M, Hamelberg D, McCammon JA. Replica-exchange accelerated molecular dynamics (REXAMD) applied to thermodynamic integration. J. Chem. Theory Comput. 2008;4:1565–1569.10.1021/ct800250m
  • Fajer M, Swift RV, McCammon JA. Using multistate free energy techniques to improve the efficiency of replica exchange accelerated molecular dynamics. J. Comput. Chem. 2009;30:1719–1725.10.1002/jcc.v30:11
  • Arrar M, de Oliveira CAF, Fajer M, Sinko W, McCammon JA. w-REXAMD: a Hamiltonian replica exchange approach to improve free energy calculations for systems with kinetically trapped conformations. J. Chem. Theory Comput. 2013;9:18–23.10.1021/ct300896h
  • Williams SL, de Oliveira CAF, McCammon JA. Coupling constant pH molecular dynamics with accelerated molecular dynamics. J. Chem. Theory Comput. 2010;6:560–568.10.1021/ct9005294
  • Bucher D, Pierce LCT, McCammon JA, Markwick PRL. On the use of accelerated molecular dynamics to enhance configurational sampling in Ab Initio simulations. J. Chem. Theory Comput. 2011;7:890–897.10.1021/ct100605v
  • Pierce LCT, Markwick PRL, McCammon JA, Doltsinis NL. Accelerating chemical reactions: exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics. J. Chem. Phys. 2011;134:174107.10.1063/1.3581093
  • Hamelberg D, Shen T, McCammon JA. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine−proline motifs: accelerated molecular dynamics analysis. J. Am. Chem. Soc. 2005;127:1969–1974.10.1021/ja0446707
  • De Oliveira CAF, Hamelberg D, McCammon JA. Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study. J. Chem. Phys. 2007;127:175105.
  • Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA. Enhanced lipid diffusion and mixing in accelerated molecular dynamics. J. Chem. Theory Comput. 2011;7:3199–3207.10.1021/ct200430c
  • Baron R, Wong SE, de Oliveira CAF, McCammon JA. E9-Im9 colicin DNase-immunity protein biomolecular association in water: a multiple-copy and accelerated molecular dynamics simulation study. J. Phys. Chem. B. 2008;112:16802–16814.10.1021/jp8061543
  • Grant BJ, Gorfe AA, McCammon JA. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS Comput. Biol. 2009;5:e1000325.10.1371/journal.pcbi.1000325
  • Bucher D, Grant BJ, Markwick PR, McCammon JA. Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics. PLoS Comput. Biol. 2011;7:e1002034.10.1371/journal.pcbi.1002034
  • de Oliveira CAF, Grant BJ, Zhou M, McCammon JA Large-scale conformational changes of trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput. Biol. 2011;7:e1002178.10.1371/journal.pcbi.1002178
  • Doshi U, Hamelberg D. Achieving rigorous accelerated conformational sampling in explicit solvent. J. Phys. Chem. Lett. 2014;5:1217–1224.10.1021/jz500179a
  • Miao Y, Feixas F, Eun C, McCammon JA. Accelerated molecular dynamics simulations of protein folding. J. Comput. Chem. 2015;36:1536–1549.10.1002/jcc.v36.20
  • Kappel K, Miao Y, McCammon JA. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein coupled receptor. Q. Rev. Biophys. 2015;48:479–487. doi:10.1017/S0033583515000153.
  • Pierce LCT, Salomon-Ferrer R, de Oliveira CAF, McCammon JA, Walker RC. Routine access to millisecond time scale events with accelerated molecular dynamics. J. Chem. Theory Comput. 2012;8:2997–3002.10.1021/ct300284c
  • Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA. Activation and dynamic network of the M2 muscarinic receptor. Proc. Nat. Acad. Sci. 2013;110:10982–10987.10.1073/pnas.1309755110
  • Miao Y, Nichols SE, McCammon JA. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. PCCP. 2014;16:6398–6406.10.1039/c3cp53962h
  • Miao Y, Caliman AD, McCammon JA. Allosteric effects of sodium ion binding on activation of the M3 muscarinic G-protein coupled receptor. Biophys. J. 2015;108:1796–1806.10.1016/j.bpj.2015.03.003
  • Shen TY, Hamelberg D. A statistical analysis of the precision of reweighting-based simulations. J. Chem. Phys. 2008:034103.10.1063/1.2944250
  • Sinko W, Miao Y, de Oliveira CAF, McCammon JA. Population based reweighting of scaled molecular dynamics. J. Phys. Chem. B. 2013;117:12759–12768.10.1021/jp401587e
  • Miao Y, Sinko W, Pierce L, Bucher D, McCammon JA. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J. Chem. Theory Comput. 2014;10:2677–2689.10.1021/ct500090q
  • Bussi G, Gervasio FL, Laio A, Parrinello M. Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 2006;128:13435–13441.10.1021/ja062463w
  • Jarzynski C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997;78:2690–2693.10.1103/PhysRevLett.78.2690
  • Gore J, Ritort F, Bustamante C. Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Nat. Acad. Sci. 2003;100:12564–12569.10.1073/pnas.1635159100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.