309
Views
14
CrossRef citations to date
0
Altmetric
Articles

Models for recovering the energy landscape of conformational transitions from single-molecule pulling experiments

Pages 1102-1115 | Received 14 Sep 2015, Accepted 14 Nov 2015, Published online: 05 Jul 2016

References

  • Wales D. Energy landscapes: Applications to clusters, biomolecules and glasses. Cambridge: Cambridge University Press; 2003.
  • Bolhuis PG, Chandler D, Dellago C, et al. Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Ann Rev Phys Chem. 2002;53:291–318.
  • Roux B. The calculation of the potential of mean force using computer simulations. Comput Phys Commun. 1995;91:275–282.
  • Woodside MT, Block SM. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Ann Rev Biophys. 2014;43:19–39.
  • Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5:491–505.
  • Hummer G, Szabo A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci. 2001;98:3658–3661.
  • Collin D, Ritort F, Jarzynski C, et al. Verification of the crooks fluctuation theorem and recovery of RNA folding free energies. Nature. 2005;437:231–234.
  • Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78:2690–2693.
  • Crooks GE. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E. 1999;60:2721–2726.
  • Bell GI. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627.
  • Zhurkov SN. Kinetic concept of the strength of solids. Int J Fract Mech. 1965;1:311–323.
  • Schlierf M, Li H, Fernandez JM. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci. 2004;101:7299–7304.
  • Marshall BT, Long M, Piper JW, et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature. 2003;423:190–193.
  • Evans E, Berk D, Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991;59:838–848.
  • Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997;72:1541–1555.
  • Hummer G, Szabo A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J. 2003;85:5–15.
  • Gergely C, Voegel JC, Schaaf P, et al. Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy. Proc Natl Acad Sci. 2000;97:10802–10807.
  • Dietz H, Rief M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci. 2004;101:16192–16197.
  • Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 1940;7:284–304.
  • Hänggi P, Talkner P, Borkovec M. Reaction-rate theory: fifty years after Kramers. Rev Mod Phys. 1990;62:251–341.
  • McQuarrie DA. Statistical mechanics. Sausalito (CA): University Science Books; 2000.
  • Smoluchowski M. Brownian molecular movement under the action of external forces and its connection with the generalized diffusion equation. Ann Phys (Leipzig). 1915;48:1103–1112.
  • Welty JR, Wicks CE, Rorrer G, et al. Fundamentals of momentum, heat, and mass transfer. Hoboken (NJ): John Wiley & Sons; 2009.
  • Dudko O, Filippov A, Klafter J, et al. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc Natl Acad Sci. 2003;100:11378–11381.
  • Dudko OK, Hummer G, Szabo A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett. 2006;96:108101.
  • Freund L. Characterizing the resistance generated by a molecular bond as it is forcibly separated. Proc Natl Acad Sci. 2009;106:8818–8823.
  • Li D, Ji B. Predicted rupture force of a single molecular bond becomes rate independent at ultralow loading rates. Phys Rev Lett. 2014;112:078302.
  • Bullerjahn JT, Sturm S, Kroy K. Theory of rapid force spectroscopy. Nat Commun. 2014;5:4463.
  • Friddle RW. Unified model of dynamic forced barrier crossing in single molecules. Phys Rev Lett. 2008;100:138302.
  • Li PC, Makarov DE. Simulation of the mechanical unfolding of ubiquitin: Probing different unfolding 19 December 14, 2015 Molecular Simulation Manuscript reaction coordinates by changing the pulling geometry. J Chem Phys. 2004;121:4826–4832.
  • Best RB, Paci E, Hummer G, et al. Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. J Phys Chem B. 2008;112:5968–5976.
  • Suzuki Y, Dudko OK. Single-molecule rupture dynamics on multidimensional landscapes. Phys Rev Lett. 2010;104:048101.
  • Zwanzig R. Diffusion a rough potential. Proc Natl Acad Sci. 1988;85:2029–2030.
  • Hyeon C, Thirumalai D. Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc Natl Acad Sci. 2003;100:10249–10253.
  • Maitra A, Arya G. Model accounting for the effects of pulling-device Stiffness in the analyses of singlemolecule force measurements. Phys Rev Lett. 2010;104:108301.
  • Evstigneev M, Reimann P. Refined force-velocity relation in atomic friction experiments. Phys Rev B. 2006;73:113401.
  • Walton EB, Lee S, Van Vliet KJ. Extending Bell’s model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys J. 2008;94:2621–2630.
  • Friedsam C, Wehle AK, Kühner F, et al. Dynamic single-molecule force spectroscopy: bond rupture analysis with variable spacer length. J Phys Condens Matter. 2003;15:S1709–S1723.
  • Ratto TV, Langry KC, Rudd RE, et al. Force spectroscopy of the double-tethered concanavalin-A mannose bond. Biophys J. 2004;86:2430–2437.
  • Hyeon C, Thirumalai D. Forced-unfolding and force-quench refolding of RNA hairpins. Biophys J. 2006;90:3410–3427.
  • Evans E, Ritchie K. Strength of a weak bond connecting flexible polymer chains. Biophys J. 1999;76:2439–2447.
  • Ray C, Brown JR, Akhremitchev BB. Correction of systematic errors in single-molecule force spectroscopy with polymeric tethers by atomic force microscopy. J Phys Chem B. 2007;111:1963–1974.
  • Maitra A, Arya G. Influence of pulling handles and device stiffness in single-molecule force spectroscopy. Phys Chem Chem Phys. 2011;13:1836–1842.
  • Marko JF, Siggia ED. Stretching DNA. Macromolecules. 1995;28:8759–8770.
  • Dudko OK, Hummer G, Szabo A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci. 2008;105:15755–15760.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Vol. 1. San Diego (CA): Academic press; 2001.
  • Leach AR. Molecular modelling: principles and applications. Harlow: Pearson Education; 2001.
  • Lu H, Isralewitz B, Krammer A, et al. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 1998;75:662–671.
  • Gao M, Craig D, Lequin O, et al. Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proc Natl Acad Sci. 2003;100:14784–14789.
  • Izrailev S, Stepaniants S, Balsera M, et al. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997;72:1568–1581.
  • Grubmüller H, Heymann B, Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. 1996;271:997–999.
  • Schlierf M, Rief M, Paci E. Complex unfolding kinetics of single-domain proteins in the presence of force. Biophys J. 2010;99:1620–1627.
  • Sun L, Noel JK, Sulkowska JI, et al. Connecting thermal and mechanical protein (un) folding landscapes. Biophys J. 2014;107:2941–2952.
  • Lindor-Larsen K, Piana S, Dror RO, et al. How fast-folding proteins fold. Science. 2011;334:517–520.
  • Paturej J, Dubbeldam JL, Rostiashvili VG, et al. Force spectroscopy of polymer desorption: Theory and molecular dynamics simulations. Soft Matter. 2014;10:2785–2799.
  • Chang JC, Fok PW, Chou T. Bayesian uncertainty quantification for bond energies and mobilities using path integral analysis. Biophys J. 2015;109:966–974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.