299
Views
7
CrossRef citations to date
0
Altmetric
Article

A DFT study of the effect of NNN Al atom on strength of Brönsted acid sites of HY zeolite

, , , , &
Pages 986-992 | Received 04 Oct 2015, Accepted 19 Dec 2015, Published online: 20 Apr 2016

References

  • Niwa M, Suzuki K, Morishita N, et al. Dependence of cracking activity on the Brönsted acidity of Y zeolite: DFT study and experimental confirmation. Catal. Sci. Technol. 2013;3:1919–1927.10.1039/c3cy00195d
  • Williams B, Babitz S, Miller J, et al. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Appl. Catal. A Gen. 1999;177:161–175.10.1016/S0926-860X(98)00264-6
  • Gounder R, Iglesia E. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. J. Am. Chem. Soc. 2009;131:1958–1971.10.1021/ja808292c
  • Noda T, Suzuki K, Katada N, et al. Combined study of IRMS-TPD measurement and DFT calculation on Brönsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. J. Catal. 2008;259:203–210.10.1016/j.jcat.2008.08.004
  • Decanio SJ, Sohn JR, Fritz PO, et al. Acid catalysis by dealuminated zeolite-Y: I. Methanol dehydration and cumene dealkylation. J. Catal. 1986;101:132–141.10.1016/0021-9517(86)90236-8
  • Sohn JR, DeCanio SJ, Fritz PO, et al. Acid catalysis by dealuminated zeolite Y: 2. The roles of aluminum. J. Phys. Chem. 1986;90:4847–4851.10.1021/j100411a026
  • Scherzer J. Designing FCC catalysts with high-silica Y zeolites. Appl. Catal. 1991;75:1–32.10.1016/S0166-9834(00)83119-X
  • Barthomeuf D, Beaumont R. X, Y, aluminum-deficient, and ultrastable faujasite-type zeolites: III. Catalytic activity. J. Catal. 1973;30:288–297.
  • To AT, Jentoft RE, Alvarez WE, et al. Generation of synergistic sites by thermal treatment of HY zeolite. Evidence from the reaction of hexane isomers. J. Catal. 2014;317:11–21.10.1016/j.jcat.2014.05.022
  • Qin Z, Shen B, Yu Z, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J. Catal. 2013;298:102–111.10.1016/j.jcat.2012.11.023
  • Almutairi SM, Mezari B, Filonenko GA, et al. Influence of extraframework aluminum on the Brönsted acidity and catalytic reactivity of faujasite zeolite. ChemCatChem. 2013;5:452–466.10.1002/cctc.201200612
  • Qin Z, Shen B, Gao X, et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication–dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. J. Catal. 2011;278:266–275.10.1016/j.jcat.2010.12.013
  • Gao Z, Tang Y. Influence of Si/Al ratio on the properties of faujasites enriched in silicon. Zeolites. 1988;8:232–237.
  • Karge HG, Dondur V, Weitkamp J. Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules: 2. Dealuminated Y-type zeolites. J. Phys. Chem. 1991;95:283–288.10.1021/j100154a053
  • Triantafillidis CS, Vlessidis AG, Evmiridis NP. Dealuminated HY zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of HY zeolites. Ind. Eng. Chem. Res. 2000;39:307–319.10.1021/ie990568k
  • Zhao Y, Liu Z, Li W, et al. Synthesis, characterization, and catalytic performance of high-silica Y zeolites with different crystallite size. Micropor. Mesopor. Mater. 2013;167:102–108.10.1016/j.micromeso.2012.03.016
  • Levinbuk M, Pavlov M, Kustov L, et al. Physicochemical and catalytic properties of a new type of as-synthesized aluminium-deficient Y zeolite. Appl. Catal. A Gen. 1998;172:177–191.10.1016/S0926-860X(98)00115-X
  • Yuan D, He D, Xu S, et al. Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite. Micropor. Mesopor. Mater. 2015;204:1–7.10.1016/j.micromeso.2014.10.049
  • Zhu L, Ren L, Zeng S, et al. High temperature synthesis of high silica zeolite Y with good crystallinity in the presence of N-methylpyridinium iodide. Chem. Commun. 2013;49:10495–10497.10.1039/c3cc43974g
  • Xu B, Bordiga S, Prins R, et al. Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. Appl. Catal. A Gen. 2007;333:245–253.10.1016/j.apcata.2007.09.018
  • Delprato F, Delmotte L, Guth J, et al. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites. 1990;10:546–552.10.1016/S0144-2449(05)80310-0
  • Gao X, Qin Z, Wang B, et al. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion. Appl. Catal. A Gen. 2012;413:254–260.10.1016/j.apcata.2011.11.015
  • Li S, Zheng A, Su Y, et al. Brönsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 2007;129:11161–11171.10.1021/ja072767y
  • Schallmoser S, Ikuno T, Wagenhofer M, et al. Impact of the local environment of Brönsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. J. Catal. 2014;316:93–102.10.1016/j.jcat.2014.05.004
  • Suzuki K, Noda T, Sastre G, et al. Periodic density functional calculation on the Brönsted acidity of modified Y-type zeolite. J. Phys. Chem. C. 2009;113:5672–5680.10.1021/jp8104562
  • Pine L, Maher P, Wachter W. Prediction of cracking catalyst behavior by a zeolite unit cell size model. J. Catal. 1984;85:466–476.10.1016/0021-9517(84)90235-5
  • Mikovsky R, Marshall J. Random aluminum-ion siting in the faujasite lattice. J. Catal. 1976;44:170–173.10.1016/0021-9517(76)90387-0
  • Barthomeuf D. Zeolite acidity dependence on structure and chemical environment. Correlations with catalysis. Mater. Chem. Phys. 1987;17:49–71.10.1016/0254-0584(87)90048-4
  • Dedecek J, Sobalik Z, Wichterlova B. Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis. Catal. Rev. 2012;54:135–223.10.1080/01614940.2012.632662
  • Ogura M, Kawazu Y, Takahashi H, et al. Aluminosilicate species in the hydrogel phase formed during the aging process for the crystallization of FAU zeolite. Chem. Mater. 2003;15:2661–2667.10.1021/cm0218209
  • Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954;39:92–96.
  • Vjunov A, Fulton JL, Huthwelker T. Quantitatively probing the Al distribution in zeolites. J. Am. Chem. Soc. 2014;136:8296–8306.10.1021/ja501361v
  • Wang N, Zhang M, Yu Y. Distribution of aluminum and its influence on the acid strength of Y zeolite. Micropor. Mesopor. Mater. 2013;169:47–53.10.1016/j.micromeso.2012.10.019
  • Liu R, Zhang J, Sun X, et al. An ONIOM study on the distribution, local structure and strength of Brönsted acid sites in FER zeolite. Comput. Theor. Chem. 2014;1027:5–10.10.1016/j.comptc.2013.10.021
  • Dedecek J, Lucero MJ, Li C, et al. Complex analysis of the aluminum siting in the framework of silicon-rich zeolites. A case study on ferrierites. J. Phys. Chem. C. 2011;115:11056–11064.10.1021/jp200310b
  • Zhou D, He N, Wang Y, et al. DFT study of the acid strength of MCM-22 with double Si/Al substitutions in 12MR supercage. J. Mol. Struc. Theochem. 2005;756:39–46.10.1016/j.theochem.2005.08.035
  • Li Y, Guo W, Fan W, et al. A DFT study on the distributions of Al and Brönsted acid sites in zeolite MCM-22. J. Mol. Catal. A Chem. 2011;338:24–32.
  • Zhang R, Li J, Wang B. The effect of Si/Al ratios on the catalytic activity of CuY zeolites for DMC synthesis by oxidative carbonylation of methanol: a theoretical study. RSC Adv. 2013;3:12287–12298.10.1039/c3ra40256h
  • Sastre G, Katada N, Suzuki K, et al. Computational study of Brönsted acidity of faujasite. Effect of the Al content on the infrared OH stretching frequencies. J. Phys. Chem. C. 2008;112:19293–19301.10.1021/jp807623m
  • Yuan S, Wang J, Li Y, et al. Theoretical studies on the properties of acid site in isomorphously substituted ZSM-5. J. Mol. Catal. A Chem. 2002;178:267–274.10.1016/S1381-1169(01)00335-1
  • Wang L, Sun Z, Ding Y, et al. A theoretical study of thiophenic compounds adsorption on cation-exchanged Y zeolites. Appl. Surf. Sci. 2011;257:7539–7544.10.1016/j.apsusc.2011.03.115
  • Dedecek J, Balgova V, Pashkova V, et al. Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chem. Mater. 2012;24:3231–3239.10.1021/cm301629a
  • Pinar AB, Gómez-Hortigüela L, McCusker LB, et al. Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent. Chem. Mater. 2013;25:3654–3661.10.1021/cm4018024
  • Schröder KP, Sauer J. Potential functions for silica and zeolite catalysts based on ab initio calculations: 3. A shell model ion pair potential for silica and aluminosilicates. J. Phys. Chem. 1996;100:11043–11049.10.1021/jp953405s
  • Ramdas S, Thomas J, Klinowski J, et al. Ordering of aluminium and silicon in synthetic faujasites. Nature. 1981;292:228–230.10.1038/292228a0
  • Engelhardt G, Lohse U, Lippmaa E, et al. 29Si NMR investigation of silicon-aluminum ordering in the aluminosilicate framework of faujasite-type zeolites. Z. Anorg. Allg. Chem. 1981;482:49–64.10.1002/(ISSN)1521-3749
  • Klinowski J, Ramdas S, Thomas JM, et al. A re-examination of Si, Al ordering in zeolites NaX and NaY. J. Chem. Soc. Faraday Trans. 1982;78:1025–1050.10.1039/f29827801025
  • Teraishi K. Effect of Si to Al substitution at next-nearest-neighbor sites on the acid strength: 2. Low Si/Al ratio or high ammonia loading. Micropor. Mesopor. Mater. 1998;20:177–185.10.1016/S1387-1811(97)00028-0
  • Tielens F, Langenaeker W, Geerlings P. Ab initio study of the bridging hydroxyl acidity and stability in the 12-membered ring of zeolites. J. Mol. Struc. Theochem. 2000;496:153–162.10.1016/S0166-1280(99)00178-5
  • Teraishi K. Effect of Si to Al substitution at next-nearest neighbor sites on the acid strength: ab initio calculation of the proton affinity and the heat of ammonia adsorption. Micropor. Mater. 1995;5:233–244.10.1016/0927-6513(95)00060-7
  • Sierka M, Sauer J. Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics [ndash] shell-model potential approach based on DFT. Faraday Discuss. 1997;106:41–62.10.1039/a701492i
  • Delley B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000;113:7756–7764.10.1063/1.1316015
  • Laury ML, Carlson MJ, Wilson AK. Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J. Comput. Chem. 2012;33:2380–2387.10.1002/jcc.v33.30
  • Govind N, Andzelm J, Reindel K, et al. Zeolite-catalyzed hydrocarbon formation from methanol: density functional simulations. Int. J. Mol. Sci. 2002;3:423–434.10.3390/i3040423
  • Eichler U, Brändle M, Sauer J. Predicting absolute and site specific acidities for zeolite catalysts by a combined quantum mechanics/interatomic potential function approach. J. Phys. Chem. B. 1997;101:10035–10050.10.1021/jp971779a
  • Suzuki K, Katada N, Niwa M. Detection and quantitative measurements of four kinds of OH in HY zeolite. J. Phys. Chem. C. 2007;111:894–900.10.1021/jp065054v
  • Czjzek M, Jobic H, Fitch AN, et al. Direct determination of proton positions in DY and HY zeolite samples by neutron powder diffraction. J. Phys. Chem. 1992;96:1535–1540.10.1021/j100183a009
  • Schroeder KP, Sauer J. Preferred stability of Al–O–Si–O–Al linkages in high-silica zeolite catalysts: theoretical predictions contrary to Dempsey’s rule. J. Phys. Chem. 1993;97:6579–6581.10.1021/j100127a003
  • Dempsey E. A tentative model of Y zeolites to explain their acid behavior. J. Catal. 1975;39:155–157.10.1016/0021-9517(75)90293-6
  • Dempsey E. Acid strength and aluminum site reactivity of Y zeolites. J. Catal. 1974;33:497–499.10.1016/0021-9517(74)90297-8
  • Kramer GJ, Van Santen R. Theoretical determination of proton affinity differences in zeolites. J. Am. Chem. Soc. 1993;115:2887–2897.10.1021/ja00060a042
  • Takaishi T. Ordered distributions of Al atoms in the framework of faujasite type and a chiral Y. J. Phys. Chem. 1995;99:10982–10987.10.1021/j100027a045
  • Jirák Z, Vratislav S, Bosáček V. A neutron diffraction study of H, Na–Y zeolites. J. Phys. Chem. Solids. 1980;41:1089–1095.10.1016/0022-3697(80)90064-5
  • Sierka M, Sauer J. Proton mobility in chabazite, faujasite, and ZSM-5 Zeolite catalysts. Comparison based on ab initio calculations. J. Phys. Chem. B. 2001;105:1603–1613.10.1021/jp004081x
  • Carvajal R, Chu PJ, Lunsford JH. The role of polyvalent cations in developing strong acidity: a study of lanthanum-exchanged zeolites. J. Catal. 1990;125:123–131.10.1016/0021-9517(90)90083-V
  • Gil B, Broclawik E, Datka J, et al. Acidic hydroxyl groups in zeolites X and Y: a correlation between infrared and solid-state NMR spectra. J. Phys. Chem. 1994;98:930–933.10.1021/j100054a031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.