760
Views
19
CrossRef citations to date
0
Altmetric
Article

Hard sphere simulation in statistical physics — methodologies and applications

Pages 1317-1329 | Received 23 Sep 2015, Accepted 02 Jan 2016, Published online: 17 Aug 2016

References

  • Hansen JP, McDonald IR. Theory of simple liquids. 3rd ed. London: Academic Press; 2006.
  • Cercignani C. Slow rarefied flows – theory and application to micro-electro-mechanical systems. Basel: Birkhäuser Verlag; 2006.
  • Wood WW. Early history of computer simulations in statistical mechanics. In: Ciccotti G, Hoover WG, editors. Proceedings of the international school of physics « Erinco Fermi » course XCVII, Varenna on Lake Como, 1985. Amsterdam: North-Holland; 1986. p. 3–14.
  • Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953;21:1087–1092.
  • Wood WW, Jacobson JD. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 1957;27:1207–1208.
  • Krauth W. Statistical mechanics: algorithms and computations. Oxford: Oxford University Press; 2006.
  • Alder BJ, Wainwright TE. Phase transition for a hard sphere system. J. Chem. Phys. 1957;27:1208–1209.
  • Alder BJ, Wainwright TE. Studies in molecular dynamics I. General methods. J. Chem. Phys. 1959;31:459–466.
  • Hiwatari Y, Isobe M,editors. The 50th anniversary of the Alder transition -- recent progress on computational statistical physics. Vol. 178, Progress of theoretical physics supplement. Kyoto: 2009.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. New York, NY: Oxford University Press; 1987.
  • Frenkel D, Smit B. Understanding molecular simulation, from algorithms to applications. 2nd ed. San Diego: Academic Press; 2001.
  • Alder BJ, Wainwright TE. Phase transition in elastic disks. Phys. Rev. 1962;127:359–361.
  • Alder BJ, Hoover WG, Young DA. Studies in molecular dynamics. V. High-density equation of state and entropy for hard disks and spheres. J. Chem. Phys. 1968;49:3688–3696.
  • Chui ST. Grain-boundary theory of melting in two dimensions. Phys. Rev. Lett. 1982;48:933–935.
  • Kosterlitz J, Thouless DJ. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C. 1973;6:1181–1203.
  • Halperin BI, Nelson DR. Theory of two-dimensional melting. Phys. Rev. Lett. 1978;41:121–124.
  • Nelson DR, Halperin BI. Dislocation-mediated melting in two dimensions. Phys. Rev. B. 1979;19:2457–2484.
  • Young AP. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B. 1979;19:1855–1866.
  • Nelson DR. Defects and geometry in condensed matter physics. Cambridge: Cambridge University Press; 2002.
  • Bernard EP, Krauth W, Wilson DB. Event-chain Monte Carlo algorithms for hard-sphere systems. Phys. Rev. E. 2009;80:056704.
  • Anderson JA, Jankowski E, Grubb TL, et al. Massively parallel Monte Carlo for many-particle simulations on GPUs. J. Comput. Phys. 2013;254:27–38.
  • Isobe M. Simple and efficient algorithm for large scale molecular dynamics simulation in hard disk systems. Int. J. Mod. Phys. C. 1999;10:1281–1293.
  • Mayer JE, Wood WW. Interfacial tension effects in finite, periodic, two-dimensional systems. J. Chem. Phys. 1965;42:4268–4274.
  • Bernard EP, Krauth W. Two-step melting in two dimensions: first-order liquid-hexatic transition. Phys. Rev. Lett. 2011;107:155704.
  • Engel M, Anderson JA, Glotzer SC, et al. Hard disks equation of state: first-order liquid-hexatic transition in two dimensions with three different simulation methods. Phys. Rev. E. 2013;87:042134.
  • Kapfer SC, Krauth W. Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 2015;114:035702.
  • Isobe M, Krauth W. Hard-sphere melting and crystallization with event-chain Monte Carlo. J. Chem. Phys. 2015;143:084509.
  • Rapaport DC. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge University Press; 2004.
  • Rapaport DC. The event scheduling problem in molecular dynamics simulation. J. Comput. Phys. 1980;34:184–201.
  • Lubachevsky BD. How to simulate billards and similar systems. J. Comput. Phys. 1991;94:255–283.
  • Marín M, Risso D, Cordero P. Efficient algorithms for many-body hard particle molecular dynamics. J. Comput. Phys. 1993;109:306–317.
  • Marín M, Cordero P. An empirical assessment of priority queues in event-driven molecular dynamics simulation. Comput. Phys. Commun. 1995;92:214–224.
  • Donev A, Torquato S, Stillinger FH. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys. 2005;202:737–764.
  • Paul G. A Complexity O(1) priority queue for event driven molecular dynamics simulations. J. Comput. Phys. 2007;221:615–625.
  • Bannerman MN, Sargant R, Lue L. DynamO: a free O(N) general event-driven molecular dynamics simulator. J. Comput. Chem. 2011;32:3329–3338.
  • Michel M, Kapfer SC, Krauth W. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. J. Chem. Phys. 2014;140:054116.
  • Bernard EP, Krauth W. Addendum to ‘Event-chain Monte Carlo algorithms for hard-sphere systems’. Phys. Rev. E. 2012;86:017701.
  • Kapfer SC, Krauth W. Sampling from a polytope and hard-disk Monte Carlo. J. Phys.: Conf. Ser. 2013;454:012031.
  • Erpenbeck JJ, Wood WW. Molecular dynamics techniques for hard-core systems. Chapter 1. In: Berne BJ,editor. Modern theoretical chemistry. Vol. 6, Statistical mechanics part B. New York (NY): Plenum; 1977. p. 1–40.
  • Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses. Phys. Rev. B. 1983;28:784–805.
  • van Meel JA, Fillion L, Valeriani C, et al. A parameter-free, solid-angle based, nearest-neighbor algorithm. J. Chem. Phys. 2012;136:234107.
  • Isobe M, Alder BJ. Generalized bond order parameter to characterize transient crystals. J. Chem. Phys. 2012;137:194501.
  • Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, Van Saarloos W, editors. Dynamical heterogeneities in glasses, colloids, and granular media. International series of monographs on physics. Oxford: Oxford University Press; 2011.
  • Chandler D, Garrahan JP. Dynamics on the way to forming glass: bubbles in space-time. Ann. Rev. Phys. Chem. 2010;61:191–217.
  • Keys AS, Hedges LO, Garrahan JP, et al. Excitations are localized and relaxation is hierarchical in glass-forming liquids. Phys. Rev. X. 2011;1:021013.
  • Speedy RJ. Glass transition in hard disc mixtures. J. Chem. Phys. 1999;110:4559–4565.
  • Froböse K, Kolbe F, Jäckle J. Size dependence of self-diffusion in a dense hard-disc liquid. J. Phys.: Condens. Matter. 2000;12:6563–6573.
  • Santen L, Krauth W. Absence of thermodynamic phase transition in a model glass former. Nature. 2000;405:550–551.
  • Donev A, Stillinger FH, Torquato S. Do binary hard disks exhibit an ideal glass transition? Phys. Rev. Lett. 2006;96:225502.
  • Donev A, Stillinger FH, Torquato S. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition. J. Chem. Phys. 2007;127:124509.
  • Perera DN, Harrowell P. Stability and structure of a supercooled liquid mixture in two dimensions. Phys. Rev. E. 1999;59:5721–5743.
  • Widmer-Cooper A. Structure and dynamics in two-dimensional glass-forming alloys [PhD dissertation]. Sydney: University of Sydney; 2006.
  • Ree FH, Hoover WG. Seventh virial coefficients for hard spheres and hard disks. J. Chem. Phys. 1967;46:4181–4197.
  • Henderson D. A simple equation of state for hard discs. Mol. Phys. 1975;30:971–971.
  • Huerta A, Carrasco-Fadanelli V, Trokhymchuk A. Towards frustration of freezing transition in a binary hard-disk mixture. Cond. Matt. Phys. 2012;15:43604.
  • Alder BJ, Wainwright TE. Decay of the velocity autocorrelation function. Phys. Rev. A. 1970;1:18–21.
  • Alder BJ, Gass DM, Wainwright TE. Studies in molecular dynamics. VIII. The transport coefficients for a hard-sphere fluid. J. Chem. Phys. 1970;53:3813–3826.
  • Isobe M. The long time tail of the velocity autocorrelation function in a two dimensional moderately dense hard disk fluid. Phys. Rev. E. 2008;77:021201.
  • Isobe M. Vortex flows in two dimensions -- the origin of hydrodynamic tail -. Prog. Theor. Phys. Suppl. 2009;178:72–78.
  • Alder BJ. Molecular-dynamics simulations. In: Ciccotti G, Hoover WG, editors. Proceedings of the international school of physics ‘Erinco Fermi ’ course XCVII, Varenna on Lake Como, 1985. Amsterdam: North-Holland; 1986. p. 66–80.
  • Ladd AJC, Alder BJ. Decay of angular correlations in hard-sphere fluids. J. Stat. Phys. 1989;57:473–482.
  • Isobe M, Alder BJ. Molasses tail in two dimensions. Mol. Phys. 2009;107:609–613.
  • Isobe M, Alder BJ. Study of transient nuclei near freezing. Prog. Theor. Phys. Suppl. 2010;184:437–448.
  • Pöschel T, Schwager T. Computational granular dynamics. Berlin: Springer-Verlag; 2004.
  • Isobe M. Bifurcations of a driven granular systems under gravity. Phys. Rev. E. 2001;64:031304.
  • Isobe M, Ochiai A. Statistical properties of granular gas under microgravity -- one dimensional inelastic hard rod system. Mol. Simul. 2007;33:147–151.
  • Wakou J, Ochiai A, Isobe M. A Langevin approach to one-dimensional granular media fluidized by vibrations. J. Phys. Soc. Jpn. 2008;77:034402.
  • Wakou J, Isobe M. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids. Phys. Rev. E. 2012;85:061311.
  • Goldhirsch I. Rapid granular flows. Annu. Rev. Fluid. Mech. 2003;35:267–293.
  • Isobe M. Velocity statistics in the two-dimensional granular turbulence. Phys. Rev. E. 2003;68:040301.
  • Isobe M. Granular turbulence in two-dimensions -- microscale reynolds number and final condensed states. Int. J. Mod. Phys. C. 2012;23:1250032.
  • Woodcock LV. Entropy difference between the face-centered cubic and hexagonal close-paking crystal structures. Nature. 1997;385:141–143.
  • Bolhuis PB, Frenkel D, Mau S, et al. Entropy difference between crystal phases. Nature. 1997;388:235–237.
  • Auer S, Frenkel D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature. 2001;409:1020–1023.
  • Gránásy L, Tóth GI. Crystallization: colloidal suspense. Nature Phys. 2014;10:12–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.