171
Views
6
CrossRef citations to date
0
Altmetric
Article

Electronic structure of boron-doped finite graphene sheets: unrestricted DFT and complete active space calculations

, , &
Pages 1512-1518 | Received 05 May 2016, Accepted 13 Jul 2016, Published online: 19 Sep 2016

References

  • Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183–191.10.1038/nmat1849
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162.
  • Vo TH, Shekhirev M., Kunkel DA, et al. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 2014;5:3189. doi:10.1038/ncomms4189
  • Cai J, Ruffieux P, Jaafar R, et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010;466:470–473.10.1038/nature09211
  • Baringhaus J, Ruan M, Edler F, et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 2014;506:349–354.10.1038/nature12952
  • Chernozatonskii LA, Sorokin PB, Artukh AA. Novel graphene-based nanostructures: Physicochemical properties and applications. Russ. Chem. Rev. 2014;83:251–279.10.1070/RC2014v083n03ABEH004367
  • Usachov D, Vilkov O, Grüneis A, et al. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 2011;11:5401–5407.10.1021/nl2031037
  • Torres AE, Guadarrama P, Fomine S. Multiconfigurational character of the ground states of polycyclic aromatic hydrocarbons. A systematic study. J. Mol. Model. 2014;20: 2208 1–9.
  • Torres AE, Fomine S. Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight. Phys. Chem. Chem. Phys. 2015;17:10608–10614.10.1039/C5CP00227C
  • Huang B. Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics. Phys. Lett. A. 2011;375:845–848.10.1016/j.physleta.2010.12.050
  • Gebhardt J, Koch RJ, Zhao W, et al. Growth and electronic structure of boron-doped graphene. Phys. Rev. B. 2013;87:155437.10.1103/PhysRevB.87.155437
  • Kan EJ, Wu X, Li Z, et al. Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys. 2013;129:084712.
  • Huzak M, Deleuze MS, Hajgató B. Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: An impossible compromise? J. Chem. Phys. 2011;135:104704.10.1063/1.3626554
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104.10.1063/1.3382344
  • TURBOMOLE V7.0. A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. 2015. Available from: http://www.cosmologic.de/turbomole/home.html.
  • Dunning TH Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Chem. Phys. 1989;90:1007–1023.
  • Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971;54:724–728.10.1063/1.1674902
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision E.01, Wallingford, CT: Gaussian, Inc.; 2009.
  • Hibino H, Kageshima H, Kotsugi M, et al. Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys. Rev. B. 2009;79:125437.10.1103/PhysRevB.79.125437
  • Rehaman A, Moughal S, Cramer CJ, et al. Second-order perturbation theory with complete and restricted active space reference functions applied to oligomeric unsaturated hydrocarbons. Phys. Chem. Chem. Phys. 2009;11:10964–10972.
  • Castillo UJ, Guadarrama P, Fomine S. Large face to face tetraphenylporphyrin/fullerene nanoaggregates. A DFT study. Org. Electron. 2013;14:2617–2627.10.1016/j.orgel.2013.05.032
  • Hutchison GR, Ratner MA, Marks TJ. Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects. J. Am. Chem. Soc. 2005;127:2339–2350.10.1021/ja0461421
  • Chen HC, Hsu CP, Reek JNH, et al. Highly soluble benzo[ghi]perylenetriimide derivatives: Stable and air-insensitive electron acceptors for artificial photosynthesis. Chem. Sus. Chem. 2015;8:3639–3650.10.1002/cssc.201500950
  • Senevirathna W, Daddario CM, Sauvé G. Density functional theory study predicts low reorganization energies for azadipyrromethene-based metal complexes. J. Phys. Chem. Lett. 2014;5:935–941.10.1021/jz402735c
  • Lin BC, Cheng CP, Lao ZPM. Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory. J. Phys. Chem. A. 2003;107:5241–5251.10.1021/jp0304529
  • Malagoli M, Brédas JL. Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 2000;327:13–17.10.1016/S0009-2614(00)00757-0
  • Sakanoue K, Motoda M, Sugimoto M, et al. A molecular orbital study on the hole transport property of organic amine compounds. J. Phys. Chem. A. 1999;103:5551–5556.10.1021/jp990206q
  • Han MY, Brant JC, Kim P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 2010;104:056801.10.1103/PhysRevLett.104.056801
  • Gruhn NE, da Silva Filho DA, Bill TG, et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 2002;124:7918–7919.10.1021/ja0175892
  • Amashukeli X., Winkler J.R., Gray H.B., Gruhn N.E., Lichtenberger D.L. Electron-transfer reorganization energies of isolated organic molecules. J Phys Chem A. 2002;106:7593–7598.10.1021/jp014148w
  • Darwent B. Bond dissociation energies in simple molecules, in: National Standarts Reference Data System, Washington, DC: National Bureau of Standards;1970. p. 31–52.10.6028/NBS.NSRDS.31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.