118
Views
15
CrossRef citations to date
0
Altmetric
Article

Theoretical study of chemisorption of cyanuric fluoride and S-triazine on the surface of Al-doped graphene

, , , &
Pages 1519-1527 | Received 02 Feb 2016, Accepted 11 Jul 2016, Published online: 19 Sep 2016

References

  • Groß S, Laabs S, Scherrmann A, et al. Improved syntheses of cyanuric fluoride and carboxylic acid fluorides. J. Prakt. Chem. 2000;342:711.
  • Olah GA, Nojima M, Kerekes I. Synthetic methods and reactions; IV. Fluorination of carboxylic acids with cyanuric fluoride. Synthesis. 1973;08:487.
  • Böhme RM, Dang Q. 1,3,5-triazine in encyclopedia of reagents for organic synthesis. Wiley. 2008; 10.1002/047084289X.rt158.pub2.
  • Magnuson ML, Kelty CA, Cantú R. Stable association complex electrospray mass spectrometry for the determination of cyanuric acid. J. Am. Soc. Mass. Spectrom. 2001;12:1085–1091.10.1016/S1044-0305(01)00292-6
  • Vaclavik L, Rosmus J, Popping B, et al. Rapid determination of melamine and cyanuric acid in milk powder using direct analysis in real time-time-of-flight mass spectrometry. J. Chromatogr. A. 2010;1217:4204–4211.10.1016/j.chroma.2010.03.014
  • Barnabas IJ, Dean JR, Fowlis IA, et al. Automated determination of s-triazine herbicides using solid-phase microextraction. J. Chromatogr. A. 1995;705:305–312.10.1016/0021-9673(95)00279-V
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.10.1038/354056a0
  • Fam, DWH, Palaniappan, A., Tok, AIY, et al. A review on technological aspects influencing commercialization of carbon nanotube sensors, Sens. Actuators B: Chem. 2011;157:1–7.
  • Hoa ND, Van Quy N, Kim D.. Nanowire structured SnOx–SWNT composites: high performance sensor for NOx detection. Sens. Actuators B: Chem. 2009;142:253–259.10.1016/j.snb.2009.07.053
  • Napolion B, Williams QL. Ab initio calculations on the structure and properties of hexagonal boron nitrides. Chem. Phys. Lett. 2010;490:210–215.10.1016/j.cplett.2010.03.058
  • Skoulidas AI, Sholl DS, Johnson JK. Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 2006;124:054708.10.1063/1.2151173
  • Wang Q, Setlur HAA, Lauerhaas JM, et al. A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 1998;72:2912–2913.10.1063/1.121493
  • Rani P, Dubey GS, Jindal VK. DFT study of optical properties of pure and doped graphene. Physica E. 2014;62:28–35.10.1016/j.physe.2014.04.010
  • Sachs B, Wehling TO, Katsnelson MI, et al. Adhesion and electronic structure of graphene on hexagonal boron nitride substrates. Phys. Rev. B. 2011;84:195414.10.1103/PhysRevB.84.195414
  • Shokuhi Rad, A. Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene, Physica E. 2016;83:135–140.
  • Ao Z, Yang J, Li S, et al. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 2008;461:276–279.10.1016/j.cplett.2008.07.039
  • Sharma S, Verma AS. A theoretical study of H2S adsorption on graphene doped with B, Al and Ga. Physica B. 2013;427:12–16.10.1016/j.physb.2013.05.019
  • Zhang H, Luo X, Song H, et al. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene. Appl. Surf. Sci. 2014;317:511–516.10.1016/j.apsusc.2014.08.141
  • Shokuhi A, Rad A, Shadravan AA, et al. Motaghedi, Lewis acid-base surface interaction of some Boron compounds with N-doped graphene; First principles study. Curr. Appl. Phys. 2015;15:1271–1277.
  • Shokuhi A, Rad M, Esfehanian S, et al. Gharati, application of carbon nanostructures towards SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J. Sulfur Chem. 2016;37:176–188.10.1080/17415993.2015.1116536
  • Shokuhi Rad A, Abedini E. Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl. Surf. Sci. 2016;360:1041–1046.
  • Ferrighi L, Datteo M, Valentin CD. Boosting graphene reactivity with oxygen by boron doping: density functional theory modeling of the reaction path. J. Phys. Chem. C. 2014;118:223–230.10.1021/jp410966r
  • Lee KJ, Kim SJ. Theoretical investigation of CO2 adsorption on graphene. Bull. Korean Chem. Soc. 2013;34:3022–3026.10.5012/bkcs.2013.34.10.3022
  • Chi M, Zhao YP. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: a first principle study. Comput. Mater. Sci. 2009;46:1085–1090.10.1016/j.commatsci.2009.05.017
  • Zhao W, Meng QY. Adsorption of methane on pristine and Al-doped graphene: a comparative study via first-principles calculation. Adv. Mater. Res. 2012;602–604:870–873.10.4028/www.scientific.net/AMR.602-604
  • Sun Y, Chen L, Zhang F, et al. First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Commun. 2010;150:1906–1910.10.1016/j.ssc.2010.07.037
  • Lv Y, Zhuang G, Wang J, et al. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Phys. Chem. Chem. Phys. 2011;13:12472–12477.10.1039/c1cp20694j
  • Shao L, Chen G, Ye H, et al. Sulfur dioxide adsorbed on graphene and heteroatom-doped graphene: a first-principles study. Eur. Phys. J. B. 2013;86:54.10.1140/epjb/e2012-30853-y
  • Ao, Z., Yang, J, Li, S. Applications of Al modified graphene on gas sensors and hydrogen storage. In: S. Mikhailov, editor. Physics and applications of graphene – theory. Shanghai: InTech; 2011, ISBN: 978-953-307-152-7.
  • Seenithurai S, Kodi Pandyan R, Vinodh Kumar S, et al. Al-decorated carbon nanotube as the molecular hydrogen storage medium. Int. J. Hydrogen Energy. 2014;39:11990–11998.10.1016/j.ijhydene.2014.05.184
  • Peyghan AA, Noei M, Yourdkhani S. Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices Microstruct. 2013;59:115–122.10.1016/j.spmi.2013.04.005
  • Shokuhi Rad A, Kashani OR. Adsorption of acetyl halide molecules on the surface of pristine and Al-doped graphene: ab initio study. Appl. Surf. Sci. 2015;355:233–241.
  • Shokuhi Rad, A. Al-doped graphene as modified nanostructure sensor for some ether molecules: ab initio study, Synth. Met. 2015;209:419–425.
  • Shokuhi Rad A. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations. Appl. Surf. Sci. 2015;357:1217–1224.
  • Shokuhi Rad A, Foukolaei VP. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth. Met. 2015;210:171–178.10.1016/j.synthmet.2015.09.026
  • Shokuhi Rad A. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations. Surf. Sci. 2016;645:6–12.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements HPu. J. Chem. Phys. 2010;132:154104.10.1063/1.3382344
  • Frisch, MJ, et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian,; 2009.
  • Vargas SRD, Mendoza WAM, Balandrán QRR, et al. Study of the molecular structure and chemical reactivity of pinocembrin by DFT calculations. Comput. Theor. Chem. 2015;1058:21–27.
  • Shokuhi Rad A, Modanlou Jouibary VP, Foukolaei Y. Study on the structure and electronic property of adsorbed guanine on aluminum doped graphene: first principles calculations. Curr. Appl Phys. 2016;16:527–533.10.1016/j.cap.2016.02.004
  • Yuan Q, Zhao YP. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 2009;131:6374–6376.10.1021/ja8093372
  • Yuan Q, Zhao YP, Li L, et al. Ab initio study of ZnO-based gas-sensing mechanisms: surface reconstruction and charge transfer. J. Phys. Chem. C. 2009;113:6107–6113.10.1021/jp810161j
  • Lin K, Yuan Q, Zhao YP, et al. Which is the most efficient candidate for the recovery of confined methane: water, carbon dioxide or nitrogen? Extreme Mech. Lett. 2016. 10.1016/j.eml.2016.05.014.
  • Shokuhi A, Rad P, Valipour A, et al. Mousavinezhad, interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem. Phys. Lett. 2015;639:29–35.
  • Shokuhi Rad A. Adsorption of C2H2 and C2H4 on Pt-decorated graphene nanostructure: ab initio study. Synth. Met. 2016;211:115–120.
  • Shokuhi Rad A, Abedini E. Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study, Appl. Surf. Sci. 2016;360:1041–1046. 10.1016/j.apsusc.2015.11.126
  • Shokuhi Rad, A. Application of polythiophene to methanol vapor detection: an ab initio study, J. Mol. Model. 2015;21:285.10.1007/s00894-015-2832-9
  • Li S. Semiconductor physical electronics. 2nd ed. Berlin: Springer; 2006.10.1007/0-387-37766-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.