380
Views
8
CrossRef citations to date
0
Altmetric
Energy Applications

Modeling organic electronic materials: bridging length and time scales

, &
Pages 730-742 | Received 02 Oct 2016, Accepted 10 Dec 2016, Published online: 02 Mar 2017

References

  • Morel D, Ghosh AK, Feng T, et al. High-efficiency organic solar cells. Appl Phys Lett. 1978;32(8):495–497.
  • Gleria M, Memming R. Novel luminescence generation by electron-transfer from semiconductor electrodes to ruthenium-bipyridil complexes. Z Phys Chem-Frankfurt. 1976;101(1–6):171–179.
  • Dyakonov V, Frankevich E. On the role played by polaron pairs in photophysical processes in semiconducting polymers. Chem Phys. 1998;227(1–2):203–217.
  • Sasabe H, Kido J. Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting. Chem Mater. 2011;23(3):621–630.
  • Kalyani NT, Dhoble SJ. Organic light emitting diodes: energy saving lighting technology-a review. Renew Sustainable Energy Rev. 2012;16(5):2696–2723.
  • Zhang S, Ye L, Hou J. Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known pbdttt polymers. Adv Energy Mater. 2016;6(11). Article ID:1502529.
  • Liu Y, Zhao J, Li Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun. 2014;5. Article ID: 5293.
  • Sirringhaus H. 25th anniversary article: organic field effect transistors: the path beyond amorphous silicon. Adv Mater. 2014;9:1319–1335.
  • Das R, Harrop P. Printed, organic & flexible electronics forecasts, players & opportunities 2016–-2026, Tech. rep.; 2015.
  • Great Britain. Department for for Business, Innovation and Skills. Plastic electronics: a UK strategy for success, Realizing the UK potential. London; 2009.
  • National Research Council; Committee on Best Practice in National Innovation Programs from Flexible Electronics. The flexible electronics opportunity. Washington (DC): The National Academies Press; 2015.
  • Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev. 2009;109(11):5868–5923.
  • Krebs FC. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells. 2009;93(4):394–412.
  • Krebs FC, Nielsen TD, Fyenbo J, et al. Manufacture, integration and demonstration of polymer solar cells in a lamp for the “lighting africa” initiative. Energy Environ Sci. 2010;3(5):512–525.
  • Li N, Kubis P, Forberich K, et al. Towards large-scale production of solution-processed organic tandem modules based on ternary composites: design of the intermediate layer, device optimization and laser based module processing. Sol Energy Mater Sol Cells. 2014;120:701–708.
  • Arias AC, MacKenzie JD, McCulloch I, et al. Materials and applications for large area electronics: solution-based approaches. Chem Rev. 2010;110(1):3–24.
  • Moulé AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater. 2009;19(19):3028–3036.
  • Peet J, Heeger AJ, Bazan GC. “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res. 2009;42(11):1700–1708.
  • Schweicher G, Lemaur V, Niebel C, et al. Bulky end-capped 1 benzothieno 3,2-b benzothiophenes: reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv Mater. 2015;27(19):3066–3072.
  • Yu G, Gao J, Hummelen JC, et al. Polymer photovoltaic cells -- enhanced efficiencies via a network of internal donor--acceptor heterojunctions. Science. 1995;270(5243):1789–1791.
  • Halls JJM, Walsh CA, Greenham NC, et al. Efficient photodiodes from interpenetrating polymer networks. Nature. 1995;376(6540):498–500.
  • Blom PWM, Mihailetchi VD, Koster LJA, et al. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater. 2007;19(12):1551–1566.
  • Brabec CJ, Heeney M, McCulloch I, et al. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev. 2011;40(3):1185–1199.
  • Pynn R. Neutron scattering–a non-destructive microscope for seeing inside matter. New York(NY): Springer; 2009.
  • Yang XN, Loos J, Veenstra SC, et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 2005;5(4):579–583.
  • Roehling JD, Batenburg KJ, Swain FB, et al. Three-dimensional concentration mapping of organic blends. Adv Funct Mater. 2013;23(17):2115–2122.
  • Salleo A, Kline RJ, DeLongchamp DM, et al. Microstructural characterization and charge transport in thin films of conjugated polymers. Adv Mater. 2010;22(34):3812–3838.
  • Zahn DRT, Gavrila GN, Salvan G. Electronic and vibrational spectroscopies applied to organic/inorganic interfaces. Chem Rev. 2007;107(4):1161–1232.
  • Hansen MR, Graf R, Spiess HW. Interplay of structure and dynamics in functional macromolecular and supramolecular systems as revealed by magnetic resonance spectroscopy. Chem Rev. 2016;116:1272–1308.
  • Chen W, Nikiforov MP, Darling SB. Morphology characterization in organic and hybrid solar cells. Energy Environ Sci. 2012;5(8):8045–8074.
  • Huang Y, Kramer EJ, Heeger AJ, et al. Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev. 2014;114(14):7006–7043.
  • DeLongchamp DM, Kline RJ, Herzing A. Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy Environ Sci. 2012;5(3):5980–5993.
  • Rivnay J, Mannsfeld SCB, Miller CE, et al. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev. 2012;112(10):5488–5519.
  • Praprotnik M, Delle Site L, Kremer K. Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem. 2008;59:545–571.
  • Feng N, Wang Q, Zheng A, et al. Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc. 2013;135(4):1607–1616.
  • Usta H, Facchetti A, Marks TJ. n-channel semiconductor materials design for organic complementary circuits. Acc Chem Res. 2011;44(7):501–510.
  • Venkateshvaran D, Nikolka M, Sadhanala A, et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature. 2014;515(7527):384–388.
  • Becke AD. A new mixing of Hartree--Fock and local density-functional theories. J Chem Phys. 1993;98(2):1372–1377.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1–3):51–57.
  • Paier J, Hirschl R, Marsman M, et al. The Perdew--Burke--Ernzerhof exchange--correlation functional applied to the g2–1 test set using a plane-wave basis set. J Chem Phys. 2005;122(23). Article ID: 234102.
  • Zhu L, Kim EG, Yi Y, et al. Charge transfer in molecular complexes with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ): a density functional theory study. Chem Mater. 2011;23(23):5149–5159.
  • Goldman N, Reed EJ, Kuo IFW, et al. Ab initio simulation of the equation of state and kinetics of shocked water. J Chem Phys. 2009;130(12). Article ID: 124517.
  • Braun S, Salaneck WR, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater. 2009;21(14–15):1450–1472.
  • Ludwigs S, editor. P3HT revisited: from molecular scale to solar cell devices; 2014. (Advances in polymer science; 265). New York (NY): Springer.
  • Vanlaeke P, Swinnen A, Haeldermans I, et al. P3ht/pcbm bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol Energy Mater Sol Cells. 2006;90(14):2150–2158.
  • Winokur M, Spiegel D, Kim Y, et al. Structural and absorption studies of the thermochromic transition in poly(3-hexylthiophene). Synth Met. 1989;28(1):419–426.
  • Tapping PC, Clafton SN, Schwarz KN, et al. Molecular-level details of morphology-dependent exciton migration in poly(3-hexylthiophene) nanostructures. J Phys Chem C. 2015;119(13):7047–7059.
  • Yin J, Wang Z, Fazzi D, et al. First-principles study of the nuclear dynamics of doped conjugated polymers. J Phys Chem C. 2016;120(3):1994–2001.
  • Yuan Y, Zhang J, Sun J, et al. Polymorphism and structural transition around 54oc in regioregular poly(3-hexylthiophene) with high crystallinity as revealed by infrared spectroscopy. Macromolecules. 2011;44(23):9341–9350.
  • Eschrig H. The fundamentals of density functional theory. Leipzig, Germany: Edition am Gutenbergplatz; 2003.
  • Poelking C, Tietze M, Elschner C, et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nat Mater. 2015;14(4):434–439.
  • Poelking C, Daoulas K, Troisi A, et al. Morphology and charge transport in P3HT: a theorist’s perspective. Berlin: Springer Berlin Heidelberg; 2014. p. 139–180.
  • Di Nuzzo D, Fontanesi C, Jones R, et al. How intermolecular geometrical disorder affects the molecular doping of donor--acceptor copolymers. Nat Commun. 2015;6. Article ID: 6460.
  • Do K, Huang DM, Faller R, et al. A comparative MD study of the local structure of polymer semiconductors P3HT and PBTTT. Phys Chem Chem Phys. 2010;12:14735–14739.
  • Lee MH, Aragó J, Troisi A. Charge dynamics in organic photovoltaic materials: interplay between quantum diffusion and quantum relaxation. J Phys Chem C. 2015;119(27):14989–14998.
  • Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. the need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11(3):361–373.
  • Noriega R, Rivnay J, Vandewal K, et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat Mater. 2013;12(11):1038–1044.
  • Fornari RP, Troisi A. Theory of charge hopping along a disordered polymer chain. Phys Chem Chem Phys. 2014;16:9997–10007.
  • Spano FC. Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J Chem Phys. 2005;122(23). Article ID: 234701.
  • Sha H, Faller R. A quantum chemistry study of curvature effects on boron nitride nanotubes/nanosheets for gas adsorption. Phys Chem Chem Phys. 2016;18:19944–19949.
  • Niles ET, Roehling JD, Yamagata H, et al. J-aggregate behavior in poly-3-hexylthiophene nanofibers. J Phys Chem Lett. 2012;3(2):259–263.
  • Dudenko D, Kiersnowski A, Shu J, et al. A strategy for revealing the packing in semicrystalline π-conjugated polymers: crystal structure of bulk poly-3-hexyl-thiophene (P3HT). Angew Chem Int Ed. 2012;51(44):11068–11072.
  • Prosa TJ, Winokur MJ, Moulton J, et al. X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb. Macromolecules. 1992;25(17):4364–4372.
  • Kayunkid N, Uttiya S, Brinkmann M. Structural model of regioregular poly(3-hexylthiophene) obtained by electron diffraction analysis. Macromolecules. 2010;43(11):4961–4967.
  • Brinkmann M, Rannou P. Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly(3-hexylthiophene) revealed by high-resolution transmission electron microscopy. Macromolecules. 2009;42(4):1125–1130.
  • Poelking C, Andrienko D. Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [p3ht] nanofibers. Macromolecules. 2013;46(22):8941–8956.
  • Alexiadis O, Mavrantzas VG. All-atom molecular dynamics simulation of temperature effects on the structural, thermodynamic, and packing properties of the pure amorphous and pure crystalline phases of regioregular P3HT. Macromolecules. 2013;46(6):2450–2467.
  • Huang DM, Moulé AJ, Faller R. Characterization of polymer--fullerene mixtures for organic photovoltaics by systematically coarse-grained molecular simulations. Fluid Phase Equilib. 2011;302(1–2):21–25.
  • Huang DM, Faller R, Do K, et al. Coarse-grained computer simulations of polymer/fullerene bulk heterojunctions for organic photovoltaic applications. J Chem Theory Comput. 2010;6(2):526–537.
  • Sun Q, Ghosh J, Faller R. State point dependence and transferability of potentials in systematic structural goarse-graining. In: Coarse-graining of condensed phase and biomolecular systems. Boca Raton (FL): CRC Press; 2008. p. 69–82.
  • Schwarz KN, Kee TW, Huang DM. Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures. Nanoscale. 2013;5:2017–2027.
  • Bayramoglu B, Faller R. Coarse-grained modeling of polystyrene in various environments by iterative boltzmann inversion. Macromolecules. 2012;45(22):9205–9219.
  • Jones ML, Huang DM, Chakrabarti B, et al. Relating molecular morphology to charge mobility in semicrystalline conjugated polymers. J Phys Chem C. 2016;120(8):4240–4250.
  • Gemünden P, Poelking C, Kremer K, et al. Nematic ordering, conjugation, and density of states of soluble polymeric semiconductors. Macromolecules. 2013;46(14):5762–5774.
  • Jankowski E, Marsh HS, Jayaraman A. Computationally linking molecular features of conjugated polymers and fullerene derivatives to bulk heterojunction morphology. Macromolecules. 2013;46(14):5775–5785.
  • Marsh HS, Jankowski E, Jayaraman A. Controlling the morphology of model conjugated thiophene oligomers through alkyl side chain length, placement, and interactions. Macromolecules. 2014;47(8):2736–2747.
  • Ko S, Hoke ET, Pandey L, et al. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J Am Chem Soc. 2012;134(11):5222–5232.
  • Root SE, Savagatrup S, Pais CJ, et al. Predicting the mechanical properties of organic semiconductors using coarse-grained molecular dynamics simulations. Macromolecules. 2016;49(7):2886–2894.
  • Du C, Ji Y, Xue J, et al. Morphology and performance of polymer solar cell characterized by DPD simulation and graph theory. Sci Rep. 2015;5. Article ID: 16854.
  • Yin W, Dadmun M. A new model for the morphology of p3ht/pcbm organic photovoltaics from small-angle neutron scattering: rivers and streams. ACS Nano. 2011;5(6):4756–4768.
  • Müller C, Ferenczi TAM, Campoy-Quiles M, et al. Binary organic photovoltaic blends: a simple rationale for optimum compositions. Adv Mater. 2008;20:3510–3515.
  • Izvekov S, Voth GA. A multiscale coarse-graining method for biomolecular systems. J Phys Chem B. 2005;109(7):2469–2473.
  • Wassenaar TA, Pluhackova K, Böckmann RA, et al. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput. 2014;10(2):676–690.
  • Kreis K, Donadio D, Kremer K, et al. A unified framework for force-based and energy-based adaptive resolution simulations. EPL (Europhys Lett.). 2014;108(3). Article ID: 30007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.