671
Views
4
CrossRef citations to date
0
Altmetric
Energy Applications

Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies

&
Pages 774-796 | Received 16 Sep 2016, Accepted 06 Feb 2017, Published online: 06 Mar 2017

References

  • Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004;428(6986):911–918.10.1038/nature02498
  • Cao Q, Kim H-S, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008;454(7203):495–500.10.1038/nature07110
  • Rogers JA, Bao Z. Printed plastic electronics and paperlike displays. J Polym Sci, Part A: Polym Chem. 2002;40(20):3327–3334.10.1002/(ISSN)1099-0518
  • Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater. 2002;14(2):99–117.10.1002/(ISSN)1521-4095
  • Snaith HJ, Abate A, Ball JM, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett. 2014;5(9):1511–1515.10.1021/jz500113x
  • Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics 2014;8(7):506–514.10.1038/nphoton.2014.134
  • Im J-H, Jang I-H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol. 2014;9(11):927–932.10.1038/nnano.2014.181
  • Choi H, Mai C-K, Kim H-B, et al. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat Commun. 2015;6:7348-1–7348-6.
  • Ma WL, Yang CY, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater. 2005;15(10):1617–1622.10.1002/(ISSN)1616-3028
  • Hegde R, Henry N, Whittle B, et al. The impact of controlled solvent exposure on the morphology, structure and function of bulk heterojunction solar cells. Sol Energy Mater Sol Cells. 2012;107:112–124.10.1016/j.solmat.2012.07.014
  • Organic electronics for a better tomorrow: innovation, accessibility, sustainability. In A White paper from the chemical sciences and society summit (CS3). San Francisco, CA: Meeting of the American Chemical Society; 2012.
  • Saunders BR, Turner ML. Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci. 2008;138(1):1–23.10.1016/j.cis.2007.09.001
  • Eperon GE, Burlakov VM, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater. 2014;24(1):151–157.10.1002/adfm.v24.1
  • Stingelin-Stutzmann N, Smits E, Wondergem H, et al. Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics. Nat Mater. 2005;4(8):601–606.10.1038/nmat1426
  • Huitema HEA, Gelinck GH, van der Putten J, et al. Active-matrix displays driven by solution-processed polymeric transistors. Adv Mater. 2002;14(17):1201–1204.10.1002/1521-4095(20020903)14:17<1201::AID-ADMA1201>3.0.CO;2-5
  • Roesch R, Faber T, von Hauff E, et al. Procedures and practices for evaluating thin-film solar cell stability. Adv Energy Mater. 2015;5(20):1501407-1–1501407-24.
  • MGI grand challenges summit: Breakout report on organic electronics. Maryland: Rockville; 2013 Nov.
  • Yan JF, Saunders BR. Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014;4(82):43286–43314.10.1039/C4RA07064J
  • Hoppe H, Sariciftci NS. Organic solar cells: an overview. J Mater Res. 2004;19(7):1924–1945.10.1557/JMR.2004.0252
  • Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 2008;92(7):686–714.10.1016/j.solmat.2008.01.005
  • Brabec CJ, Gowrisanker S, Halls JJM, et al. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater. 2010;22(34):3839–3856.10.1002/adma.200903697
  • Blom PWM, Mihailetchi VD, Koster LJA, et al. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater. 2007;19(12):1551–1566.10.1002/(ISSN)1521-4095
  • Facchetti A. π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater. 2011;23(3):733–758.10.1021/cm102419z
  • Mishra A, Bäuerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 2012;51(9):2020–2067.10.1002/anie.201102326
  • Bundgaard E, Krebs FC. Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 2007;91(11):954–985.10.1016/j.solmat.2007.01.015
  • Lin YZ, Li YF, Zhan XW. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev. 2012;41(11):4245–4272.10.1039/c2cs15313k
  • Park NG. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett. 2013;4(15):2423–2429.10.1021/jz400892a
  • Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol. 2015;10(5):391–402.10.1038/nnano.2015.90
  • Jung HS, Park NG. Perovskite solar cells: from materials to devices. Small. 2015;11(1):10–25.10.1002/smll.201402767
  • Dang MT, Wantz G, Bejbouji H, et al. Polymeric solar cells based on P3HT:PCBM: role of the casting solvent. Sol Energy Mater Sol Cells 2011;95(12):3408–3418.10.1016/j.solmat.2011.07.039
  • Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today. 2013;16(4):123–132.10.1016/j.mattod.2013.04.005
  • Heliatek Heliafilm. [cited Jan 31]. Available from: http://www.heliatek.com/en/heliafilm
  • Carrillo J-MY, Kumar R, Goswami M, et al. New insights into the dynamics and morphology of P3HT: PCBM active layers in bulk heterojunctions. Phys Chem Chem Phys. 2013;15(41):17873–17882.10.1039/c3cp53271b
  • Moliton A, Nunzi JM. How to model the behaviour of organic photovoltaic cells. Polym Int. 2006;55(6):583–600.10.1002/(ISSN)1097-0126
  • Shaw PE, Ruseckas A, Samuel IDW. Exciton diffusion measurements in poly(3-hexylthiophene). Adv Mater. 2008;20(18):3516–3520.10.1002/adma.200800982
  • van Bavel S, Sourty E, de With G, et al. Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells. Macromolecules 2009;42(19):7396–7403.10.1021/ma900817t
  • He YJ, Li YF. Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys. 2011;13(6):1970–1983.10.1039/C0CP01178A
  • Meskers SCJ, Hübner J, Oestreich M, et al. Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J Phys Chem B. 2001;105(38):9139–9149.10.1021/jp0113331
  • Gong X, Tong MH, Brunetti FG, et al. Bulk heterojunction solar cells with large open-circuit voltage: electron transfer with small donor–acceptor energy offset. Adv Mater. 2011;23(20):2272.10.1002/adma.201003768
  • Clarke TM, Durrant JR. Charge photogeneration in organic solar cells. Chem Rev. 2010;110(11):6736–6767.10.1021/cr900271s
  • Maurano A, Hamilton R, Shuttle CG, et al. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv Mater. 2010;22(44):4987.10.1002/adma.v22.44
  • Moulé AJ, Meerholz K. Morphology control in solution-processed bulk-heterojunction solar cell mixtures. Adv Funct Mater. 2009;19(19):3028–3036.10.1002/adfm.v19:19
  • Bian LY, Zhu EW, Tang J, et al. Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells. Prog Polym Sci. 2012;37(9):1292–1331.10.1016/j.progpolymsci.2012.03.001
  • Li G, Shrotriya V, Huang JS, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater. 2005;4(11):864–868.
  • Schmidt-Mende L, Fechtenkotter A, Mullen K, et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001;293(5532):1119–1122.10.1126/science.293.5532.1119
  • You JB, Dou LT, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun. 2013;4:1446-1–1446-10.
  • Sun YM, Welch GC, Leong WL, et al. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater. 2012;11(1):44–48.
  • Peet J, Senatore ML, Heeger AJ, et al. The role of processing in the fabrication and optimization of plastic solar cells. Adv Mater. 2009;21(14–15):1521–1527.10.1002/adma.v21:14/15
  • Segalman RA, McCulloch B, Kirmayer S, et al. Block copolymers for organic optoelectronics. Macromolecules 2009;42(23):9205–9216.10.1021/ma901350w
  • Kan B, Zhang Q, Li MM, et al. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J Am Chem Soc. 2014;136(44):15529–15532.
  • Kan B, Li MM, Zhang Q, et al. A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc. 2015;137(11):3886–3893.10.1021/jacs.5b00305
  • Pivrikas A, Neugebauer H, Sariciftci NS. Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review. Solar Energy. 2011;85(6):1226–1237.10.1016/j.solener.2010.10.012
  • Vanlaeke P, Vanhoyland G, Aernouts T, et al. Polythiophene based bulk heterojunction solar cells: morphology and its implications. Thin Solid Films. 2006;511–512:358–361.10.1016/j.tsf.2005.12.031
  • Love JA, Proctor CM, Liu JH, et al. Film morphology of high efficiency solution-processed small-molecule solar cells. Adv Funct Mater. 2013;23(40):5019–5026.10.1002/adfm.v23.40
  • Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107(4):1324–1338.10.1021/cr050149z
  • Collins BA, Tumbleston JR, Ade H. Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J Phys Chem Lett. 2011;2(24):3135–3145.10.1021/jz2014902
  • Sumpter BG, Meunier V. Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems? J Polym Sci Part B-Polym Phys. 2012;50(15):1071–1089.10.1002/polb.23075
  • Ji YJ, Du CM, Xu XJ, et al. Characterising the morphology and efficiency of polymer solar cell by experiments and simulations. Mol Simul. 2016;42(10):836–845.10.1080/08927022.2015.1114176
  • Groves C, Greenham NC. Monte Carlo simulations of organic photovoltaics. Multiscale Model Org Hybrid Photovoltaics. 2014;352:257–278.
  • Risko C, McGehee MD, Brédas JL. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells. Chem Sci. 2011;2(7):1200–1218.10.1039/C0SC00642D
  • Kaiser A, Probst M, Stretz HA, et al. Aggregates of PCBM molecules: a computational study. Int J Mass Spectrom. 2014;365–366:225–231.10.1016/j.ijms.2014.01.019
  • Wu FY, Deng ZQ, Li CQ, et al. Structure evolution of fluorinated conjugated polymers based on benzodithiophene and benzothiadiazole for photovoltaics. J Phys Chem C. 2015;119(15):8038–8045.10.1021/acs.jpcc.5b00663
  • Cornil J, Verlaak S, Martinelli N, et al. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale. Acc Chem Res. 2013;46(2):434–443.10.1021/ar300198p
  • Castet F, D’Avino G, Muccioli L, et al. Charge separation energetics at organic heterojunctions: on the role of structural and electrostatic disorder. Phys Chem Chem Phys. 2014;16(38):20279–20290.10.1039/C4CP01872A
  • Jailaubekov AE, Willard AP, Tritsch JR, et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat Mater. 2013;12(1):66–73.
  • Wu GF, Li Z, Zhang X, et al. Charge separation and exciton dynamics at polymer/ZnO interface from first-principles simulations. J Phys Chem Lett. 2014;5(15):2649–2656.10.1021/jz500980q
  • Long R, Prezhdo OV. Asymmetry in the electron and hole transfer at a polymer–carbon nanotube heterojunction. Nano Lett. 2014;14(6):3335–3341.10.1021/nl500792a
  • Shuai ZG, Wang D, Peng Q, et al. Computational evaluation of optoelectronic properties for organic/carbon materials. Acc Chem Res. 2014;47(11):3301–3309.10.1021/ar400306k
  • van der Poll TS, Zhugayevych A, Chertkov E, et al. Polymorphism of crystalline molecular donors for solution-processed organic photovoltaics. J Phys Chem Lett. 2014;5(15):2700–2704.10.1021/jz5012675
  • Idé J, Fazzi D, Casalegno M, et al. Electron transport in crystalline PCBM-like fullerene derivatives: a comparative computational study. J Mater Chem C. 2014;2(35):7313–7325.10.1039/C4TC00502C
  • Polkehn M, Tamura H, Eisenbrandt P, et al. Molecular packing determines charge separation in a liquid crystalline bisthiophene–perylene diimide donor–acceptor material. J Phys Chem Lett. 2016;7(7):1327–1334.10.1021/acs.jpclett.6b00277
  • Aguirre JC, Ferreira A, Ding H, et al. Panoramic View of electrochemical pseudocapacitor and organic solar cell research in molecularly engineered energy materials (MEEM). J Phys Chem C. 2014;118(34):19505–19523.10.1021/jp501047j
  • Marchiori CFN, Koehler M. Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: a molecular study using density functional theory calculations. Synth Met. 2010;160(7–8):643–650.10.1016/j.synthmet.2009.12.026
  • Hattori S, Mou W, Rajak P, et al. Interfacial design for reducing charge recombination in photovoltaics. Appl Phys Lett. 2013;102(9):093302-1–093302-5.
  • D’Avino G, Muccioli L, Zannoni C, et al. Electronic polarization in organic crystals: a Comparative study of induced dipoles and intramolecular charge redistribution schemes. J Chem Theory Comput. 2014;10(11):4959–4971.10.1021/ct500618w
  • Zhugayevych A, Postupna O, Bakus II RC, et al. Ab initio study of a molecular crystal for photovoltaics: light absorption, exciton and charge carrier transport. J Phys Chem C. 2013;117(10):4920–4930.10.1021/jp310855p
  • Oldani N, Tretiak S, Bazan G, et al. Modeling of internal conversion in photoexcited conjugated molecular donors used in organic photovoltaics. Energy Environ Sci. 2014;7(3):1175–1184.10.1039/c3ee43170c
  • Liu LJ, Li H, Bian J, et al. Solution-processable two-dimensional conjugated organic small molecules containing triphenylamine cores for photovoltaic application. New J Chem. 2014;38(10):5009–5017.10.1039/C4NJ00814F
  • Lee DC, Brownell LV, Yan L, et al. Morphological effects on the small-molecule-based solution-processed organic solar cells. ACS Appl Mater Interfaces. 2014;6(18):15767–15773.10.1021/am5027538
  • Anthony JE. Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater. 2011;23(3):583–590.10.1021/cm1023019
  • Lv L, Wang XF, Wang XL, et al. Tellurophene-based N-type copolymers for photovoltaic applications. ACS Appl Mater Interfaces. 2016;8(50):34620–34629.10.1021/acsami.6b11041
  • Kim Y, Song CE, Ko EJ, et al. DPP-based small molecule, non-fullerene acceptors for ‘channel II’ charge generation in OPVs and their improved performance in ternary cells. Rsc Adv. 2015;5(7):4811–4821.10.1039/C4RA12184H
  • Yavuz I, Lopez SA, Lin JB, et al. Quantitative prediction of morphology and electron transport in crystal and disordered organic semiconductors. J Mater Chem C. 2016;4(47):11238–11243.10.1039/C6TC03823A
  • Tummala NR, Mehraeen S, Fu Y-T, et al. Materials-scale implications of solvent and temperature on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM): a theoretical perspective. Adv Funct Mater. 2013;23(46):5800–5813.10.1002/adfm.v23.46
  • Peerless JS, Bowers GH, Kwansa AL, et al. Fullerenes in aromatic solvents: correlation between solvation-shell structure, solvate formation, and solubility. J Phys Chem B. 2015;119(49):15344–15352.10.1021/acs.jpcb.5b09386
  • Mortuza SM, Banerjee S. Molecular modeling study of agglomeration of 6,6-phenyl-C61-butyric acid methyl ester in solvents. J Chem Phys. 2012;137(24):244308-1–244308-12.
  • Mortuza SM, Banerjee S. Molecular modeling of nanoparticles and conjugated polymers during synthesis of photoactive layers of organic photovoltaic solar cells. AIChE Annual Meeting, San Francisco, CA, USA; 2013.
  • Rispens MT, Meetsma A, Rittberger R, et al. Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV: PCBM ‘plastic’ solar cells. Chem Commun. 2003;17:2116–2118.
  • Frigerio F, Casalegno M, Carbonera C, et al. Molecular dynamics simulations of the solvent- and thermal history-dependent structure of the PCBM fullerene derivative. J Mater Chem. 2012;22(12):5434–5443.10.1039/c2jm16142g
  • Reddy SY, Kuppa VK. Molecular dynamics simulations of organic photovoltaic materials: structure and dynamics of oligothiophene. J Phys Chem C. 2012;116(28):14873–14882.10.1021/jp212548r
  • Fu YT, Risko C, Brédas JL. Intermixing at the pentacene–fullerene bilayer interface: a molecular dynamics study. Adv Mater. 2013;25(6):878–882.10.1002/adma.v25.6
  • Ruoff RS, Tse DS, Malhotra R, et al. Solubility of fullerene (C60) in a variety of solvents. J Phys Chem. 1993;97(13):3379–3383.10.1021/j100115a049
  • Brandrup J, Immergut EH, Grulke EA. Polymer handbook. 4th ed. New York, NY: John Wiley and Sons; 1999.
  • Wang CI, Hua CC. Solubility of C-60 and PCBM in organic solvents. J Phys Chem B. 2015;119(45):14496–14504.10.1021/acs.jpcb.5b07399
  • Schmidt-Hansberg B, Sanyal M, Grossiord N, et al. Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer-fullerene solar cells. Sol Energy Mater Sol Cells 2012;96(1):195–201.10.1016/j.solmat.2011.09.059
  • Yin W, Dadmun M. A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. ACS Nano. 2011;5(6):4756–4768.10.1021/nn200744q
  • Yi YP, Coropceanu V, Brédas JL. Exciton-dissociation and charge-recombination processes in pentacene/C-60 solar cells: theoretical insight into the impact of interface geometry. J Am Chem Soc. 2009;131(43):15777–15783.10.1021/ja905975w
  • Alexiadis O, Mavrantzas VG. All-atom molecular dynamics simulation of temperature effects on the structural, thermodynamic, and packing properties of the pure amorphous and pure crystalline phases of regioregular P3HT. Macromolecules 2013;46(6):2450–2467.10.1021/ma302211g
  • Pani RC, Bond BD, Krishnan G, et al. Correlating fullerene diffusion with the polythiophene morphology: molecular dynamics simulations. Soft Matter. 2013;9(42):10048–10055.10.1039/c3sm51906f
  • Huang DM, Faller R, Do K, et al. Coarse-grained computer simulations of polymer/fullerene bulk heterojunctions for organic photovoltaic applications. J Chem Theory Comput. 2010;6(2):526–537.10.1021/ct900496t
  • Lee C-K, Pao C-W, Chu C-W. Multiscale molecular simulations of the nanoscale morphologies of P3HT: PCBM blends for bulk heterojunction organic photovoltaic cells. Energy Environ Sci. 2011;4(10):4124–4132.10.1039/c1ee01508g
  • Lee C-K, Pao C-W. Solubility of [6,6]-Phenyl-C 61-butyric Acid methyl ester and optimal blending ratio of bulk heterojunction polymer solar cells. J Phys Chem C. 2012;116(23):12455–12461.10.1021/jp3028947
  • Lee CK, Wodo O, Ganapathysubramanian B, et al. Electrode materials, thermal annealing sequences, and lateral/vertical phase separation of polymer solar cells from multiscale molecular simulations. ACS Appl Mater Interfaces. 2014;6(23):20612–20624.10.1021/am506015r
  • Lee CK, Pao CW. Nanomorphology evolution of P3HT/PCBM blends during solution-processing from coarse-grained molecular simulations. J Phys Chem C. 2014;118(21):11224–11233.10.1021/jp501323p
  • Marsh HS, Jayaraman A. Morphological studies of blends of conjugated polymers and acceptor molecules using langevin dynamics simulations. J Polym Sci Part B-Polym Phys. 2013;51(1):64–77.10.1002/polb.v51.1
  • Jankowski E, Marsh HS, Jayaraman A. Computationally linking molecular features of conjugated polymers and fullerene derivatives to bulk heterojunction morphology. Macromolecules 2013;46(14):5775–5785.10.1021/ma400724e
  • Zhou NJ, Dudnik AS, Li T, et al. All-polymer solar cell performance optimized via systematic molecular weight tuning of both donor and acceptor polymers. J Am Chem Soc. 2016;138(4):1240–1251.10.1021/jacs.5b10735
  • Carrillo JMY, Seibers Z, Kumar R, et al. Petascale simulations of the morphology and the molecular interface of bulk heterojunctions. ACS Nano. 2016;10(7):7008–7022.10.1021/acsnano.6b03009
  • Mortuza SM, Kariyawasam LK, Banerjee S. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles. Phys Rev E. 2015;92(1):013304-1–013304-14.
  • Du CM, Ji YJ, Xue JW, et al. Morphology and performance of polymer solar cell characterized by DPD simulation and graph theory. Sci Rep. 2015;5:16854-1–16854-13.
  • Xu XJ, Ji YJ, Du CM, et al. The prediction of the morphology and PCE of small molecular organic solar cells. RSC Adv. 2015;5(87):70939–70948.10.1039/C5RA12318F
  • Nardes AM, Ferguson AJ, Whitaker JB, et al. Beyond PCBM: understanding the photovoltaic performance of blends of indene-C60 multiadducts with poly(3-hexylthiophene). Adv Funct Mater. 2012;22(19):4115–4127.10.1002/adfm.v22.19
  • Jeon NJ, Noh JH, Yang WS, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015;517(7535):476.10.1038/nature14133
  • Xiao Z, Yuan Y, Wang Q, et al. Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Mater Sci Eng R-Rep. 2016;101:1–38.10.1016/j.mser.2015.12.002
  • Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2:00–00.
  • Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012;338(6107):643–647.10.1126/science.1228604
  • Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3 NH3 PbI3 /TiO2 heterojunction solar cells. J Am Chem Soc. 2012;134(42):17396–17399.10.1021/ja307789s
  • Marcon V, van der Vegt N, Wegner G, et al. Modeling of molecular packing and conformation in oligofluorenes. J Phys Chem B. 2006;110(11):5253–5261.10.1021/jp056858y
  • Service, R. F. Outlook brightens for plastic solar cells. Science 2011;332(6027):293–293.
  • Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015;347(6221):519–522.10.1126/science.aaa2725
  • Sutherland BR, Sargent EH. Perovskite photonic sources. Nat Photonics. 2016;10(5):295–302.10.1038/nphoton.2016.62
  • Bi Y, Hutter EM, Fang YJ, et al. Charge carrier lifetimes exceeding 15 μs in Methylammonium lead iodide single crystals. J Phys Chem Lett. 2016;7(5):923–928.10.1021/acs.jpclett.6b00269
  • Adhikari N, Dubey A, Khatiwada D, et al. Interfacial study to suppress charge carrier recombination for high efficiency perovskite solar cells. ACS Appl Mater Interfaces. 2015;7(48):26445–26454.10.1021/acsami.5b09797
  • Salim T, Sun S, Abe Y, et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J Mater Chem A. 2015;3(17):8943–8969.10.1039/C4TA05226A
  • Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovoltaics 2015;23(1):1–9.10.1002/pip.v23.1
  • Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics 2014;8(2):133–138.
  • Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542–546.10.1126/science.1254050
  • Lunt RR, Osedach TP, Brown PR, et al. Practical roadmap and limits to nanostructured photovoltaics. Adv Mater. 2011;23(48):5712–5727.10.1002/adma.v23.48
  • Wei Z, Chen H, Yan K, et al. Inkjet printing and instant chemical transformation of a CH3 NH3 PbI3 /nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed. 2014;53(48):13239–13243.10.1002/anie.201408638
  • Wu WR, Jeng US, Su CJ, et al. Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano. 2011;5(8):6233–6243.10.1021/nn2010816
  • Khatiwada D, Venkatesan S, Adhikari N, et al. Efficient perovskite solar cells by temperature control in single and mixed halide precursor solutions and films. J Phys Chem C. 2015;119(46):25747–25753.10.1021/acs.jpcc.5b08294
  • Williams ST, Rajagopal A, Chueh CC, et al. Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J Phys Chem Lett. 2016;7(5):811–819.10.1021/acs.jpclett.5b02651
  • Rajagopal A, Williams ST, Chueh CC, et al. Abnormal current–voltage hysteresis induced by reverse bias in organic-inorganic hybrid perovskite photovoltaics. J Phys Chem Lett. 2016;7(6):995–1003.10.1021/acs.jpclett.6b00058
  • Yuan YB, Huang JS. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc Chem Res. 2016;49(2):286–293.10.1021/acs.accounts.5b00420
  • Chen CC, Hong ZR, Li G, et al. One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive. J Photonics Energy. 2015;5:057405-1–057405-8.
  • Suarez B, Gonzalez-Pedro V, Ripolles TS, et al. Recombination study of combined halides (Cl, Br, I) Perovskite solar cells. J Phys Chem Lett. 2014;5(10):1628–1635.10.1021/jz5006797
  • Xu J, Buin A, Ip AH, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodese. Nat Commun. 2015;6:00–00.
  • Barbour LW, Hegadorn M, Asbury JB. Watching electrons move in real time: Ultrafast infrared spectroscopy of a polymer blend photovoltaic material. J Am Chem Soc. 2007;129(51):15884–15894.10.1021/ja074657x
  • Girifalco LA, Hodak M, Lee RS. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B. 2000;62(19):13104–13110.10.1103/PhysRevB.62.13104
  • Zhu ZL, Chuen CC, Lin F, et al. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer. Adv Sci. 2016;3(9):1600027-1–1600027-7.
  • Li YW, Zhao Y, Chen Q, et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J Am Chem Soc. 2015;137(49):15540–15547.10.1021/jacs.5b10614
  • Dresselhaus, MS, Dresselhaus, G, Eklund, PC. Science of fullerenes and carbon nanotubes. San Diego, CA: Academic Press; 1996.
  • You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014;8(2):1674–1680.10.1021/nn406020d
  • Seo J, Park S, Kim YC, et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ Sci. 2014;7(8):2642–2646.10.1039/C4EE01216J
  • Mortuza SM, Banerjee S. Relating synthesis parameters to the morphology of the photoactive layer in organic photovoltaic solar cells using molecular dynamics simulations. In Organic solar cells: materials, devices, interfaces and modeling. Boca Raton (FL): CRC Press; 2015. p. 89–112.
  • Greaney PA, Chrzan DC. Irreversible island growth in the presence of anisotropic surface diffusion with long jumps. Phys Rev B. 2005;72(11):115432-1–115432-14.
  • Cantrell R, Clancy P. A computational study of surface diffusion of C60 on pentacene. Surf Sci. 2008;602(22):3499–3505.10.1016/j.susc.2008.09.027
  • Ghorai PK, Glotzer SC. Atomistic simulation study of striped phase separation in mixed-ligand self-assembled monolayer coated nanoparticles. J Phys Chem C. 2010;114(45):19182–19187.10.1021/jp105013k
  • Kim B-H, Chung Y-C. Molecular dynamics simulation of the thin film deposition of Co/Cu(1 1 1) with Pb surfactant. J Appl Phys. 2009;106(4):044304-1–044304-3.
  • Voter AF. Introduction to the Kinetic Monte Carlo Method. In Radiation effects in solids. Netherlands: Springer; 2007. Vol. 235, p. 1–23.10.1007/978-1-4020-5295-8
  • Agiorgousis ML, Sun YY, Zeng H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3 NH3 PbI3. J Am Chem Soc. 2014;136(41):14570–14575.10.1021/ja5079305
  • Carignano MA, Kachmar A, Hutter J. Thermal effects on CH3 NH3 PbI3 perovskite from ab initio molecular dynamics simulations. J Phys Chem C. 2015;119(17):8991–8997.10.1021/jp510568n
  • Frost JM, Butler KT, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014;14(5):2584–2590.10.1021/nl500390f
  • Frost JM, Butler KT, Walsh A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. Apl Mater. 2014;2(8):081506-1–081506-10.
  • Frost JM, Walsh A. What is moving in hybrid halide perovskite solar cells? Acc Chem Res. 2016;49(3):528–535.10.1021/acs.accounts.5b00431
  • Huang LY, Lambrecht WRL. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys Rev B. 2016;93(19):195211-1–195211-8.
  • Lindblad R, Bi DQ, Park BW, et al. Electronic structure of TiO2/CH3 NH3 PbI3 perovskite solar cell interfaces. J Phys Chem Lett. 2014;5(4):648–653.10.1021/jz402749f
  • Long R, Liu J, Prezhdo OV. Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3 NH3 PbI3 perovskite by time-domain atomistic simulation. J Am Chem Soc. 2016;138(11):3884–3890.10.1021/jacs.6b00645
  • Mattoni A, Filippetti A, Saba MI, et al. Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature. J Phys Chem C. 2015;119(30):17421–17428.10.1021/acs.jpcc.5b04283
  • Montero-Alejo AL, Menéndez-Proupin E, Hidalgo-Rojas D, et al. Modeling of thermal effect on the electronic properties of photovoltaic perovskite CH3 NH3 PbI3: the case of tetragonal phase. J Phys Chem C. 2016;120(15):7976–7986.10.1021/acs.jpcc.6b01013
  • Neukirch AJ, Nie WY, Blancon JC, et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 2016;16(6):3809–3816.10.1021/acs.nanolett.6b01218
  • Swainson IP, Hammond RP, Soullière C, et al. Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3. J Solid State Chem. 2003;176(1):97–104.10.1016/S0022-4596(03)00352-9
  • Swainson I, Chi LS, Her JH, et al. Orientational ordering, tilting and lone-pair activity in the perovskite methylammonium tin bromide, CH3 NH3 SnBr3. Acta Crystallogr Sect B-Struct Sci. 2010;66:422–429.10.1107/S0108768110014734
  • Goehry C, Nemnes GA, Manolescu A. Collective behavior of molecular dipoles in CH3 NH3 PbI3. J Phys Chem C. 2015;119(34):19674–19680.10.1021/acs.jpcc.5b05823
  • Madjet ME, El-Mellouhi F, Carignano MA, et al. Atomic partial charges on CH3NH3PbI3 from first-principles electronic structure calculations. J Appl Phys. 2016;119(16):165501-1–165501-6.
  • Shao Y, Xiao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun. 2014;5:5784-1–5784-7.
  • Wang Y, Gould T, Dobson JF, et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3 NH3 PbI3. Phys Chem Chem Phys. 2014;16(4):1424–1429.10.1039/C3CP54479F
  • Huang LY, Lambrecht WRL. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys Rev B. 2013;88(16):165203-1–165203-12.
  • Even J, Pedesseau L, Tea E, et al. Density functional theory simulations of semiconductors for photovoltaic applications: hybrid organic-inorganic perovskites and III/V heterostructures. Int J Photoenergy. 2014;2014:649408-1–649408-11.
  • Even J, Pedesseau L, Jancu JM, et al. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys Status Solidi-Rapid Res Lett. 2014;8(1):31–35.10.1002/pssr.v8.1
  • Even J, Pedesseau L, Jancu JM, et al. Importance of Spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett. 2013;4(17):2999–3005.10.1021/jz401532q
  • Sapori D, Kepenekian M, Pedesseau L, et al. Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites. Nanoscale 2016;8(12):6369–6378.10.1039/C5NR07175E
  • Kepenekian M, Robles R, Katan C, et al. Rashba and dresselhaus effects in hybrid organic – inorganic perovskites: from basics to devices. ACS Nano. 2015;9(12):11557–11567.10.1021/acsnano.5b04409
  • Even J, Pedesseau L, Katan C, et al. Solid-state physics perspective on hybrid perovskite semiconductors. J Phys Chem C. 2015;119(19):10161–10177.10.1021/acs.jpcc.5b00695
  • Even J, Pedesseau L, Katan C. Understanding quantum confinement of charge carriers in layered 2D Hybrid perovskites. Chem Phys Chem. 2014;15(17):3733–3741.10.1002/cphc.v15.17
  • Chi LS, Swainson I, Cranswick L, et al. The ordered phase of methylammonium lead chloride CH3ND3PbCl3. J Solid State Chem. 2005;178(5):1376–1385.10.1016/j.jssc.2004.12.037
  • Filippetti A, Mattoni A. Hybrid perovskites for photovoltaics: insights from first principles. Phys Rev B. 2014;89(12):125203-1–125203-8.
  • Mosconi E, Quarti C, Ivanovska T, et al. Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys Chem Chem Phys. 2014;16(30):16137–16144.10.1039/C4CP00569D
  • Bakulin AA, Selig O, Bakker HJ, et al. Real-Time observation of organic cation reorientation in methylammonium lead iodide perovskites. J Phys Chem Lett. 2015;6(18):3663–3669.10.1021/acs.jpclett.5b01555
  • Du MH. Efficient carrier transport in halide perovskites: theoretical perspectives. J Mater Chem A. 2014;2(24):9091–9098.10.1039/c4ta01198h
  • She LM, Liu MZ, Zhong DY. Atomic structures of CH3 NH3 PbI3 (0 0 1) surfaces. ACS Nano. 2016;10(1):1126–1131.10.1021/acsnano.5b06420
  • Ohmann R, Ono LK, Kim HS, et al. Real-space imaging of the atomic structure of organic-inorganic perovskite. J Am Chem Soc. 2015;137(51):16049–16054.10.1021/jacs.5b08227
  • Torres A, Rego LGC. Surface effects and adsorption of methoxy anchors on hybrid lead iodide perovskites: insights for spiro-MeOTAD attachment. J Phys Chem C. 2014;118(46):26947–26954.10.1021/jp510595s
  • Buin A, Comin R, Ip AH, et al. Perovskite quantum dots modeled using ab Initio and replica exchange molecular dynamics. J Phys Chem C. 2015;119(24):13965–13971.10.1021/acs.jpcc.5b03613
  • Buin A, Pietsch P, Xu JX, et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 2014;14(11):6281–6286.10.1021/nl502612m
  • Mattoni A, Filippetti A, Saba MI, et al. Temperature Evolution of methylammonium trihalide vibrations at the atomic scale. J Phys Chem Lett. 2016;7(3):529–535.10.1021/acs.jpclett.5b02546
  • Gutierrez-Sevillano J, Ahmad S, Calero S, et al. Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells. Phys Chem Chem Phys. 2015;17(35):22770–22777.10.1039/C5CP03220B
  • Won Y. Force field for monovalent, divalent, and trivalent cations developed under the solvent boundary potential. J Phys Chem A. 2012;116(47):11763–11767.10.1021/jp309150r
  • Markovich G, Perera L, Berkowitz ML, et al. The solvation of Cl−, Br−, and I− in acetonitrile clusters: photoelectron spectroscopy and molecular dynamics simulations. J Chem Phys. 1996;105(7):2675–2685.10.1063/1.472131
  • Wang JM, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174.10.1002/(ISSN)1096-987X
  • Taufique MFN, Mortuza SM, Banerjee S. Mechanistic insight into the attachment of fullerene derivatives on crystal faces of methylammonium lead iodide based perovskites. J Phys Chem C. 2016;120(39):22426–22432.10.1021/acs.jpcc.6b07200
  • Mortuza SM, Taufique MFN, Banerjee S. Solution processed deposition of electron transport layers on perovskite crystal surface-a modeling based study. Appl Surf Sci. 2017;394:488–497.10.1016/j.apsusc.2016.10.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.