633
Views
21
CrossRef citations to date
0
Altmetric
Energy Applications

Computationally connecting organic photovoltaic performance to atomistic arrangements and bulk morphology

&
Pages 756-773 | Received 15 Sep 2016, Accepted 12 Feb 2017, Published online: 09 Mar 2017

References

  • Espinosa N, Hösel M, Angmo D, et al. Solar cells with one-day energy payback for the factories of the future. Energy Environ Sci. 2012;5:5117.
  • Mazzio KA, Luscombe CK. The future of organic photovoltaics. Chem Soc Rev. 2015;44(1):78–90.
  • Kaushik M, Kaushik B. Organic solar cells: design, synthesis and characterization. Int J Eng Sci. 2013;2(July):310–319.
  • Peet J, Heeger AJ, Bazan GC. “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res. 2009;42(11):1700–1708.
  • Chiechi RC, Havenith RWA, Hummelen JC, et al. Modern plastic solar cells: materials, mechanisms and modeling. Mater Today. 2013;16(7–8):281–289.
  • Vandewal K, Himmelberger S, Salleo A. Structural factors that affect the performance of organic bulk heterojunction solar cells. Macromolecules. 2013;46:6379–6387.
  • Graham KR, Cabanetos C, Jahnke JP, et al. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. J Am Chem Soc. 2014;136(27):9608–9618.
  • Glotzer SC. Assembly engineering: Materials design for the 21st century (2013 P.V. Danckwerts lecture). Chem Eng Sci. 2014;121:3–9.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):B864–B871.
  • Szabo A, Ostlund NS. Modern quantum chemistry: introduction to advanced electronic structure theory. New York (NY): Courier Corporation; 1989.
  • Gross EKU, Dobson JF, Petersilka M. Density functional theory of time-dependent phenomena. Density functional theory II, Berlin: Springer-Verlag; 1996. p. 81–172.
  • Koh SE, Delley B, Medvedeva JE, et al. Quantum chemical analysis of electronic structure and n- and p-type charge transport in perfluoroarene-modified oligothiophene semiconductors. J Phys Chem B. 2006;110(48):24361–24370.
  • Schueppel R, Schmidt K, Uhrich C, et al. Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys Rev B. 2008;77(8):085311.
  • Helgaker T, Jorgensen P, Olsen J. Molecular electronic-structure theory. Chichester: Wiley; 2014.
  • Uhrich CL, Falkenberg C, Rabe J, et al. Organic solar cells: from lab to roll-to-roll production. 2014;9184:918415.
  • Lin X, Subbaraman H, Pan Z, et al. Towards realizing high-throughput, roll-to-roll manufacturing of flexible electronic systems. Electronics. 2014;3(4):624–635.
  • Miller NC, Sweetnam S, Hoke ET, et al. Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. Nano Lett. 2012;12(3):1566–1570.
  • Chen W, Xu T, He F, et al. Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 2011;11(9):3707–3713.
  • Shao S, Liu J, Zhang J, et al. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells. ACS Appl Mater Interfaces. 2012;4:5704–5710.
  • Verploegen E, Mondal R, Bettinger CJ, et al. Effects of thermal annealing upon the morphology of polymer-fullerene blends. Adv Funct Mater. 2010;20(20):3519–3529.
  • Grob S, Bartynski AN, Opitz A, et al. Solvent vapor annealing on perylene-based organic solar cells. J Mater Chem A. 2015;3(30):15700–15709.
  • Daggett V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc Chem Res. 2002;35(6):422–429.
  • LeBard DN, Levine BG, Mertmann P, et al. Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units. Soft Matter. 2011;8(8):1–5.
  • Best RB, Hummer G, Eaton WA. Native contacts determine protein folding mechanisms in atomistic simulations. Proc Nat Acad Sci USA. 2013;110(44):17874–17879.
  • Buesser B, Grohn AJ, Pratsinis SE. Sintering rate and mechanism of TiO 2 nanoparticles by molecular dynamics. J Phys Chem C. 2011;115(22):11030–11035.
  • Elder RM, Jayaraman A. Structure and thermodynamics of ssDNA oligomers near hydrophobic and hydrophilic surfaces. Soft Matter. 2013;9(48):11521.
  • Haji-Akbari A, Engel M, Keys AS, et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature. 2009;462(7274):773–777.
  • Haji-Akbari A, Engel M, Glotzer SC. Phase diagram of hard tetrahedra. J Chem Phys. 2011;135(19):194101:1–194101:10.
  • Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys. 2008;227(10):5342–5359.
  • Trott CR. LammpsCuda-a new GPU accelerated molecular dynamics simulations package and its application to ion-conducting glasses [PhD thesis]. Technische Universitaet Ilmenau; 2011.
  • Stone JE, Phillips JC, Freddolino PL, et al. Accelerating molecular modeling applications with graphics processors. J Comput Chem. 2007;28(16):2618–2640.
  • Levine BG, Stone JE, Kohlmeyer A. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J Comput Phys. 2011;230(9):3556–3569.
  • Anderson JA, Glotzer SC. The development and expansion of HOOMD-blue through six years of GPU proliferation. 2013. arXiv 1308.5587.
  • Phillips JL, Colvin ME, Newsam S. Validating clustering of molecular dynamics simulations using polymer models. BMC Bioinformatics. 2011;12:1–445.
  • Anderson JA, Jankowski E, Grubb TL, et al. Massively parallel monte carlo for many-particle simulations on GPUs. J Comput Phys. 2013;254:27–38.
  • Glaser J, Qin J, Medapuram P, et al. Collective and single-chain correlations in disordered melts of symmetric diblock copolymers: quantitative comparison of simulations and theory. Macromolecules. 2014;47(2):851–869.
  • Götz AW, Williamson MJ, Xu D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput. 2012;8(5):1542–1555.
  • Carrillo J-MY, Kumar R, Goswami M, et al. New insights into the dynamics and morphology of P3HT:PCBM active layers in bulk heterojunctions. Phys Chem Chem Phys. 2013;15(41):17873.
  • Jankowski E, Marsh HS, Jayaraman A. Computationally linking molecular features of conjugated polymers and fullerene derivatives to bulk heterojunction morphology. Macromolecules. 2013;46(14):5775–5785.
  • Marsh HS, Jankowski E, Jayaraman A. Controlling the morphology of model conjugated thiophene oligomers through alkyl side chain length, placement, and interactions. Macromolecules. 2014;47(8):2736–2747.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev. A. 1985;31(3):1695–1697.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52(12):7182–7190.
  • Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101(September):4177–4189.
  • Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys. 1997;106(14):6082–6085.
  • Ikeshoji T, Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys. 1994;81(2):251–261.
  • Müller-Plathe F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear. Phys Rev E. 1999;59(5):4894–4898.
  • Müller-Plathe F. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chemphyschem. 2002;3(9):755–769.
  • Ingólfsson HI, Lopez CA, Uusitalo JJ, et al. The power of coarse graining in biomolecular simulations. Wiley Interdiscip Rev Comput Mol Sci. 2014;4(3):225–248.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–760.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations the MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(June):7812–7824.
  • Jorgensen WL, Tirado-Rives J. The OPLS [Optimized Potentials for Liquid Simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc. 1988;110(6):1657–1666.
  • Moore TC, Iacovella CR, McCabe C. Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. J Chem Phys. 2014;140(22):224104.
  • Moore TC, Iacovella CR, McCabe C. Development of a coarse-grained water forcefield via multistate iterative Boltzmann inversion. 2015. arXiv 1509.07887.
  • Marrink SJ, Tieleman DP. Perspective on the Martini model. Chem Soc Rev. 2013;42(16):6801–6822.
  • Do K, Huang DM, Faller R, et al. A comparative MD study of the local structure of polymer semiconductors P3HT and PBTTT. Phys Chem Chem Phys. 2010;12(44):14735.
  • Huang DM, Faller R, Do K, et al. Coarse-grained computer simulations of polymer/fullerene bulk heterojunctions for organic photovoltaic applications. J Chem Theory Comput. 2010;6(2):526–537.
  • Huang DM, Moule AJ, Faller R. Characterization of polymer-fullerene mixtures for organic photovoltaics by systematically coarse-grained molecular simulations. Fluid Phase Equilib. 2011;302(1–2):21–25.
  • Ko S, Hoke ET, Pandey L, et al. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J Am Chem Soc. 2012;134(11):5222–5232.
  • Ho V, Boudouris BW, Segalman RA. Tuning polythiophene crystallization through systematic side chain functionalization. Macromolecules. 2010;43(19):7895–7899.
  • Bruner C, Miller NC, McGehee MD, et al. Molecular intercalation and cohesion of organic bulk heterojunction photovoltaic devices. Adv Funct Mater. 2013;23(22):2863–2871.
  • Hauptman H. The phase problem of x-ray crystallography. Proc. Indian Acad. Sci. 1983;92:1427–1454.
  • DeLongchamp DM, Kline RJ, Herzing A. Nanoscale Structure Measurements for Polymer-fullerene Photovoltaics. Energy Environ Sci. 2012;5(3):5980–5993.
  • Schmidt-Rohr K. Simulation of small-angle scattering curves by numerical Fourier transformation. J Appl Crystallogr. 2007;40:16–25.
  • Le Roux S, Petkov V. ISAACS-interactive structure analysis of amorphous and crystalline systems. J Appl Crystallogr. 2010;43(1):181–185.
  • Frenkel D. Simulations: the dark side. Eur Phys J Plus. 2013;128(1):10–30.
  • Wassenaar TA, Pluhackova K, Böckmann RA, et al. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput. 2014;10(2):676–690.
  • Parsons J, Holmes JB, Rojas JM, et al. Practical conversion from torsion space to cartesian space for in silico protein synthesis. J Comput Chem. 2005;26(10):1063–1068.
  • Machado MR, Pantano S. SIRAH tools: Mapping, backmapping and visualization of coarse-grained models. Bioinformatics. 2016;32(10):1568–1570.
  • Harmandaris VA, Adhikari NP, van der Vegt NFA, et al. Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations. Macromolecules. 2006;39(19):6708–6719.
  • Hess B, León S, van der Vegt N, et al. Long time atomistic polymer trajectories from coarse grained simulations: bisphenol-A polycarbonate. Soft Matter. 2006;2(5):409–414.
  • Santangelo G, Matteo AD, Müller-Plathe F, et al. From mesoscale back to atomistic models: A fast reverse-mapping procedure for vinyl polymer chains. J Phys Chem B. 2007;111(11):2765–2773.
  • Peter CLD. Site, and K. Kremer. Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal. Soft Matter. 2008;4(4):859.
  • Chen X, Carbone P, Santangelo G, et al. Backmapping coarse-grained polymer models under sheared nonequilibrium conditions. Phys Chem Chem Phys. 2009;11(12):1977.
  • Deng W-Q, Goddard WA. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B. 2004;108(25):8614–8621.
  • Nelson J, Kwiatkowski JJ, Kirkpatrick J, et al. Modeling charge transport in organic photovoltaic materials. Acc Chem Res. 2009;42(11):1768–1778.
  • Schwarz KN, Kee TW, Huang DM. Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures. Nanoscale. 2013;5(5):2017–2027.
  • Peter C, Kremer K. Multiscale simulation of soft matter systems. Faraday Discuss. 2010;144:9–24.
  • Ghanbari A, Bohm MC, Müller-Plathe F. A simple reverse mapping procedure for coarse-grained polymer models with rigid side groups. Macromolecules. 2011;44(13):5520–5526.
  • Zhang G, Moreira LA, Stuehn T, et al. Equilibration of High Molecular Weight Polymer Melts: A Hierarchical Strategy. ACS Macro Lett. 2014;3(2):198–203.
  • Jones ML, Huang DM, Chakrabarti B, et al. Relating molecular morphology to charge mobility in semicrystalline conjugated polymers. J Phys Chem C. 2016;120(8):4240–4250.
  • Nguyen TD, Phillips CL, Anderson JA, et al. Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units. Comput Phys Commun. 2011;182(11):2307–2313.
  • Miller ED, Jones ML, Jankowski E. Enhanced computational sampling of perylene and perylothiophene packing with rigid-body models. ACS Omega. 2017;2:353–362.
  • Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics. 2009;3(11):649–653.
  • Babel A, Jenekhe SA. Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s. Synth Met. Jan 2005;148(2):169–173.
  • Darling SB, Sternberg M. Importance of side chains and backbone length in defect modeling of poly(3-alkylthiophenes). J Phys Chem B. 2009;113(18):6215–6218.
  • Tummala NR, Risko C, Bruner C, et al. Entanglements in P3HT and their influence on thin-film mechanical properties: insights from molecular dynamics simulations. J Polym Sci Part B Polym Phys. 2015;53(13):934–942.
  • Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107(11):4423.
  • Hashimoto S, Ikuta T, Shiren K, et al. Triplet-energy control of polycyclic aromatic hydrocarbons by BN replacement: development of ambipolar host materials for phosphorescent organic light-emitting diodes. Chem Mater. 2014;26(21):6265–6271.
  • Saraiva-Souza A, de Souza FM, Aleixo VFP, et al. A single molecule rectifier with strong push-pull coupling. J Chem Phys. 2008;129(20):204701.
  • McMahon DP, Cheung DL, Goris L, et al. Relation between microstructure and charge transport in polymers of different regioregularity. J Phys Chem C. 2011;115(39):19386–19393.
  • Murthy DHK, Gao M, Vermeulen MJW, et al. Mechanism of mobile charge carrier generation in blends of conjugated polymers and fullerenes: significance of charge delocalization and excess free energy. J Phys Chem C. 2012;116(16):9214–9220.
  • Marcus RA. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem. 1964;15(1):155–196.
  • Tummala NR, Mehraeen S, Fu Y-T, et al. Materials-scale implications of solvent and temperature on [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM): a theoretical perspective. Adv Funct Mater. 2013;23(46):5800–5813.
  • Henderson IC, Clarke N. On modelling surface directed spinodal decomposition. Macromol Theory Simul. 2005;14(7):435–443.
  • Lyons BP, Clarke N, Groves C. The quantitative effect of surface wetting layers on the performance of organic bulk heterojunction photovoltaic devices. J Phys Chem C. 2011;115(45):22572–22577.
  • Lyons BP, Clarke N, Groves C. The relative importance of domain size, domain purity and domain interfaces to the performance of bulk-heterojunction organic photovoltaics. Energy Environ Sci. 2012;5(6):7657–7663.
  • Jones ML, Dyer R, Clarke N, et al. Are hot charge transfer states the primary cause of efficient free-charge generation in polymer:fullerene organic photovoltaic devices? a kinetic Monte Carlo study. Phys Chem Chem Phys. 2014;16(38):20310–20320.
  • Watkins PK, Walker AB, Verschoor GLB. Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett. 2005;5(9):1814–1818.
  • Marsh RA, Groves C, Greenham NC. A microscopic model for the behavior of nanostructured organic photovoltaic devices. J Appl Phys. 2007;101(8):083509.
  • Groves C, Kimber RGE, Walker AB. Simulation of loss mechanisms in organic solar cells: a description of the mesoscopic monte carlo technique and an evaluation of the first reaction method. J. Chem. Phys. 2010;133(14):144110.
  • Kimber RGE, Walker AB, Schröder-Turk GE, et al. Bicontinuous minimal surface nanostructures for polymer blend solar cells. Phys Chem Chem Phys. 2010;12(4):844–851.
  • Groves C. Simulating charge transport in organic semiconductors and devices: a review. Rep Prog Phys. 2017;80(2):026502.
  • Brédas J-L, Beljonne D, Coropceanu V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev. 2004;104(11):4971–5004.
  • Lan Y-K, Huang C-I. A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. J Phys Chem B. 2008;112(47):14857–14862.
  • Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys. 1956;24(5):966.
  • Hush NS. Adiabatic rate processes at electrodes. I. Energy-charge relationships. J Chem Phys. 1958;28(5):962–972.
  • Mozer AJ, Sariciftci NS. Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem Phys Lett. 2004;389(4–6):438–442.
  • Ballantyne AM, Chen L, Dane J, et al. The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells. Adv Funct Mater. 2008;18(16):2373–2380.
  • Vukmirovic N, Wang L-W. Electronic structure of disordered conjugated polymers: polythiophenes. J Phys Chem B. 2009;113(2):409–415.
  • Mauer R, Kastler M, Laquai F. The impact of polymer regioregularity on charge transport and efficiency of P3HT:PCBM photovoltaic devices. Adv Funct Mater. 2010;20(13):2085–2092.
  • Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934;1(1–6):104–113.
  • Coropceanu V, Cornil J, da Silva Filho DA, et al. Charge transport in organic semiconductors. Chem Rev. 2007;107(4):926–952.
  • Ridley J, Zerner M. An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines. Theor Chim Acta. 1973;32(2):111–134.
  • Kirkpatrick J. An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian. Int J Quantum Chem. 2008;108(1):51–56.
  • Lemaur V, da Silva Filho DA, Coropceanu V, et al. Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure property relationships. J Am Chem Soc. 2004;126(10):3271–3279.
  • Mattheus CC. Polymorphism and electronic properties of pentacene [PhD thesis]. University of Groningen; 2002.
  • Liu T, Troisi A. Absolute rate of charge separation and recombination in a molecular model of the P3HT/PCBM interface. J Phys Chem C. Feb 2011;115(5):2406–2415.
  • Johansson E, Larsson S. Electronic structure and mechanism for conductivity in thiophene oligomers and regioregular polymer. Synth Met. 2004;144(2):183–191.
  • Liu T, Cheung DL, Troisi A. Structural variability and dynamics of the P3HT/PCBM interface and its effects on the electronic structure and the charge-transfer rates in solar cells. Phys Chem Chem Phys. 2011;13(48):21461.
  • Groves C. Suppression of geminate charge recombination in organic photovoltaic devices with a cascaded energy heterojunction. Energy Environ Sci. 2013;6(5):1546–1551.
  • Jones ML, Chakrabarti B, Groves C. Monte Carlo simulation of geminate pair recombination dynamics in organic photovoltaic devices: multi-exponential, field-dependent kinetics and its interpretation. J Phys Chem C. 2014;118(1):85–91.
  • Schrader M, Fitzner R, Hein M, et al. Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J Am Chem Soc. 2012;134(13):6052–6056.
  • Poelking C, Andrienko D. Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [P3HT] nanofibers. Macromolecules. 2013;46(22):8941–8956.
  • Heiber MC, Dhinojwala A. Efficient generation of model bulk heterojunction morphologies for organic photovoltaic device modeling. Phys Rev Appl. 2014;2(1):014008.
  • Bässler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys Status Solidi B. 1993;175(1):15–56.
  • Athanasopoulos S, Kirkpatrick J, Martínez D, et al. Predictive study of charge transport in disordered semiconducting polymers. Nano Lett. 2007;7(6):1785–1788.
  • Blakesley JC, Clubb HS, Greenham NC. Temperature-dependent electron and hole transport in disordered semiconducting polymers: Analysis of energetic disorder. Phys Rev B. 2010;81(4):045210.
  • Pasveer WF, Cottaar J, Tanase C, et al. Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett. 2005;94(20):206601.
  • Bakulin AA, Rao A, Pavelyev VG, et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science. 2012;335(6074):1340–1344.
  • Jailaubekov AE, Willard AP, Tritsch JR, et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat Mater. 2012;12(1):66–73.
  • Carbone P, Troisi A. Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J Phys Chem Lett. 2014;5(15):2637–2641.
  • Haber KS, Albrecht AC. Time-of-flight technique for mobility measurements in the condensed phase. J Phys Chem. 1984;88(24):6025–6030.
  • Chen B, Lee C-S, Lee S-T, et al. Improved time-of-flight technique for measuring carrier mobility in thin films of organic electroluminescent materials. Jpn J Appl Phys. 2000;39(Part 1, No. 3A):1190–1192.
  • Dost R, Das A, Gruel M. Time-of-flight mobility measurements in organic field-effect transistors. J Appl Phys. 2008;104(8):084519.
  • Kline RJ, McGehee MD, Kadnikova EN, et al. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater. 2003;15(18):1519–1522.
  • Verilhac J-M, Pokrop R, LeBlevennec G, et al. Molecular weight dependent charge carrier mobility in Poly(3,3”-dioctyl-2,2’:5’,2”-terthiophene). J Phys Chem B. 2006;110(27):13305–13309.
  • Pandey SS, Takashima W, Nagamatsu S, et al. Regioregularity vs. regiorandomness: effect on photocarrier transport in poly(3-hexylthiophene). Jpn J Appl Phys. 2000;39(Part 2, No. 2A):L94–L97.
  • Kim Y, Cook S, Tuladhar SM, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater. 2006;5(3):197–203.
  • Sirringhaus H, Brown PJ, Friend RH, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 1999;401(6754):685–688.
  • Zen A, Pflaum J, Hirschmann S, et al. Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 2004;14(8):757–764.
  • Lan Y-K, Huang C-I. Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly(3-hexylthiophene). J Phys Chem B. 2009;113(44):14555–14564.
  • Aiyar AR, Hong J-I, Nambiar R, et al. Tunable crystallinity in regioregular poly(3-hexylthiophene) thin films and its impact on field effect mobility. Adv Funct Mater. 2011;21(14):2652–2659.
  • Bao Z, Dodabalapur A, Lovinger AJ. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett. 1996;69(26):4108.
  • Sirringhaus H. Integrated optoelectronic devices based on conjugated polymers. Science. 1998;280(5370):1741–1744.
  • Bredas JL, Calbert JP, da Silva Filho DA, et al. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Nat Acad Sci. 2002;99(9):5804–5809.
  • Medina BM, Van Vooren A, Brocorens P, et al. Electronic structure and charge-transport properties of polythiophene chains containing thienothiophene units: a joint experimental and theoretical study. Chem Mater. 2007;19(20):4949–4956.
  • Troisi A, Orlandi G, Anthony JE. Electronic interactions and thermal disorder in molecular crystals containing cofacial pentacene units. Chem Mater. 2005;17(20):5024–5031.
  • Cheung DL, McMahon DP, Troisi A. Computational study of the structure and charge-transfer parameters in low-molecular-mass P3HT. J Phys Chem B. 2009;113(28):9393–9401.
  • Troisi A. Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv Mater. 2007;19(15):2000–2004.
  • Kirkpatrick J, Marcon V, Nelson J, et al. Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys Rev Lett. 2007;98(22):227402.
  • Vehoff T, Baumeier B, Troisi A, et al. Charge transport in organic crystals: role of disorder and topological connectivity. J Am Chem Soc. Aug 2010;132(33):11702–11708.
  • Wang L, Li Q, Shuai Z, et al. Multiscale study of charge mobility of organic semiconductor with dynamic disorders. Phys Chem Chem Phys. 2010;12(13):3309–3314.
  • Wodo O, Tirthapura S, Chaudhary S, et al. A graph-based formulation for computational characterization of bulk heterojunction morphology. Org Electron. 2012;13(6):1105–1113.
  • Wodo O, Roehling JD, Moulé AJ, et al. Quantifying organic solar cell morphology: a computational study of three-dimensional maps. Energy Environ Sci. 2013;6(10):3060–3070.
  • Towns J, Cockerill T, Dahan M, et al. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014;16(5):62–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.