563
Views
18
CrossRef citations to date
0
Altmetric
Energy Applications

The right isotherms for the right reasons? Validation of generic force fields for prediction of methane adsorption in metal-organic frameworks

, , &
Pages 828-837 | Received 22 Nov 2016, Accepted 25 Feb 2017, Published online: 15 Mar 2017

References

  • Barea E, Montoro C, Navarro JAR. Toxic gas removal – metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev. 2014;43:5419–5430.10.1039/C3CS60475F
  • Allendorf MD, Stavila V. Crystal engineering, structure–function relationships, and the future of metal-organic frameworks. CrystEngComm. 2015;17:229–246.10.1039/C4CE01693A
  • Farrusseng D. Metal-organic frameworks: applications from catalysis to gas storage. Weinheim: Wiley; 2011.10.1002/9783527635856
  • Lee J, Farha OK, Roberts J, et al. Metal-organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–1459.10.1039/b807080f
  • Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science. 2013;341:974. https://protect-us.mimecast.com/s/bAlrB1U5YgONSr?domain=pnas.orgwww.pnas.org/cgi/doi/10.1073/pnas.1615172114
  • Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38:1477–504.10.1039/b802426j
  • Colón YJ, Snurr RQ. High-throughput computational screening of metal-organic frameworks. Chem Soc Rev. 2014;43:5735–5749.10.1039/C4CS00070F
  • Coudert FX, Fuchs AH. Computational characterization and prediction of metal-organic framework properties. Coord Chem Rev. 2016;307:211–236.10.1016/j.ccr.2015.08.001
  • Düren T, Bae YS, Snurr RQ. Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev. 2009;38:1237–47.10.1039/b803498m
  • Getman RB, Bae Y-S, Wilmer CE, et al. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev. 2012;112:703–723.10.1021/cr200217c
  • First EL, Floudas CA. MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater. 2013;165:32–39.10.1016/j.micromeso.2012.07.049
  • Düren T, Sarkisov L, Yaghi OM, et al. Design of new materials for methane storage. Langmuir. 2004;20:2683–2689.10.1021/la0355500
  • Sarkisov L, Düren T, Snurr RQ. Molecular modelling of adsorption in novel nanoporous metal-organic materials. Mol Phys. 2004;102:211–221.10.1080/00268970310001654854
  • Bichoutskaia E, Suyetin M, Bound M, et al. Methane adsorption in metal-organic frameworks containing nanographene linkers: a computational study. J Phys Chem C. 2014;118:15573–15580.10.1021/jp503210h
  • Chen LJ, Grajciar L, Nachtigall P, et al. Accurate prediction of methane adsorption in a metal-organic framework with unsaturated metal sites by direct implementation of an ab initio derived potential energy surface in GCMC simulation. J Phys Chem C. 2011;115:23074–23080.10.1021/jp2090878
  • Cossi M, Gatti G, Canti L, et al. Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs). Langmuir. 2012;28:14405–14414.10.1021/la302195m
  • Fernandez M, Woo TK, Wilmer CE, et al. Large-scale quantitative structure-property relationship (QSPR) analysis of methane storage in metal-organic frameworks. J Phys Chem C. 2013;117:7681–7689.10.1021/jp4006422
  • Gomez-Gualdron DA, Gutov OV, Krungleviciute V, et al. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem Mater. 2014;26:5632–5639.10.1021/cm502304e
  • Wilmer CE, Leaf M, Lee CY, et al. Large-scale screening of hypothetical metal-organic frameworks. Nat Chem. 2012;4:83–9.
  • Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23:12154–12158.10.1021/la701736m
  • Garberoglio G, Skoulidas AI, Johnson JK. Adsorption of gases in metal organic materials: comparison of simulations and experiments. J Phys Chem B. 2005;109:13094–13103.10.1021/jp050948l
  • Yang QY, Wiersum AD, Jobic H, et al. Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modeling approach. J Phys Chem C. 2011;115:13768–13774.10.1021/jp202633t
  • Pérez-Pellitero J, Amrouche H, Siperstein FR, et al. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chem A Eur J. 2010;16:1560–1571.10.1002/chem.v16:5
  • Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035.10.1021/ja00051a040
  • Mayo SL, Olafson BD, Goddard WA. Dreiding: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909.10.1021/j100389a010
  • Jorgensen WL, Laird ER, Nguyen TB, et al. Monte Carlo simulations of pure liquid substituted benzenes with OPLS potential functions. J Comput Chem. 1993;14:206–215.10.1002/(ISSN)1096-987X
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.10.1021/ja9621760
  • Yang Q, Liu D, Zhong C, et al. Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev. 2013;113:8261–8323.
  • Goerigk L, Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. PCCP. 2011;13:6670–88.10.1039/c0cp02984j
  • Shao YH, Gan ZT, Epifanovsky E, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys. 2015;113:184–215.10.1080/00268976.2014.952696
  • Becke AD. Density-functional thermochemisTRY.3. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.10.1063/1.464913
  • Vogiatzis KD, Klopper W, Friedrich J. Non-covalent interactions of CO2 with functional groups of metal-organic frameworks from a CCSD(T) scheme applicable to large systems. J Chem Theory Comput. 2015;11:1574–1584.10.1021/ct5011888
  • Henley A, Lennox MJ, Easun TL, et al. Computational evaluation of the impact of incorporated nitrogen and oxygen heteroatoms on the affinity of polyaromatic ligands for carbon dioxide and methane in metal-organic frameworks. J Phys Chem C. 2016;120:27342–27348.10.1021/acs.jpcc.6b08767
  • Grajciar L, Nachtigall P, Bludský O, et al. Accurate ab initio description of adsorption on coordinatively unsaturated Cu2+ and Fe3+ sites in MOFs. J Chem Theory Comput. 2015;11:230–238.10.1021/ct500711z
  • Supronowicz B, Mavrandonakis A, Heine T. Interaction of small gases with the unsaturated metal centers of the HKUST-1 metal organic framework. J Phys Chem C. 2013;117:14570–14578.10.1021/jp4018037
  • Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566.10.1080/00268977000101561
  • Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n -alkanes. J Phys Chem B. 1998;102:2569–2577.10.1021/jp972543+
  • Amirjalayer S, Schmid R. Adsorption of hydrocarbons in metal-organic frameworks: a force field benchmark on the example of benzene in metal-organic framework 5. J Phys Chem C. 2012;116:15369–15377.10.1021/jp302713m
  • Haldoupis E, Borycz J, Shi HL, et al. Ab initio derived force fields for predicting CO2 adsorption and accessibility of metal sites in the metal-organic frameworks M-MOF-74 (M=Mn Co, Ni, Cu). J Phys Chem C. 2015;119:16058–16071.10.1021/acs.jpcc.5b03700
  • Kulkarni AR, Sholl DS. DFT-derived force fields for modeling hydrocarbon adsorption in MIL-47(V). Langmuir. 2015;31:8453–8468.10.1021/acs.langmuir.5b01193
  • Casewit CJ, Colwell KS, Rappe AK. Application of a universal force field to organic molecules. J Am Chem Soc. 1992;114:10035–10046.10.1021/ja00051a041
  • Rappe AK, Colwell KS, Casewit CJ. Application of a universal force field to metal complexes. Inorg Chem. 1993;32:3438–3450.10.1021/ic00068a012
  • Potoff JJ, Errington JR, Panagiotopoulos AZ. Molecular simulation of phase equilibria for mixtures of polar and non-polar components. Mol Phys. 1999;97:1073–1083.10.1080/00268979909482908
  • Ozturk TN, Keskin S. Computational screening of porous coordination networks for adsorption and membrane-based gas separations. J Phys Chem C. 2014;118:13988–13997.10.1021/jp5033977
  • Wang S. Comparative molecular simulation study of methane adsorption in metal−organic frameworks. Energy Fuels. 2007;21:953–956.10.1021/ef060578f
  • Sarkisov L. Toward rational design of metal-organic frameworks for sensing applications: efficient calculation of adsorption characteristics in zero loading regime. J Phys Chem C. 2012;116:3025–3033.10.1021/jp210633w
  • Gupta A, Chempath S, Sanborn MJ, et al. Object-oriented programming paradigms for molecular modeling. Mol Simul. 2003;29:29–46.10.1080/0892702031000065719
  • Pillai RS, Pinto ML, Pires J, et al. Understanding gas adsorption selectivity in IRMOF-8 using molecular simulation. ACS Appl Mater Interfaces. 2015;7:624–637.10.1021/am506793b
  • Moreau F, Kolokolov DI, Stepanov AG, et al. Engineering porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. PNAS. Forthcoming.
  • Yang QY, Zhong CL. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal−organic frameworks. J Phys Chem B. 2006;110:17776–17783.10.1021/jp062723w
  • Fairen-Jimenez D, Galvelis R, Torrisi A, et al. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. Dalton Trans. 2012;41:10752–10762.10.1039/c2dt30774j
  • Allen P, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1987.
  • Trokhymchuk A, Alejandre J. Computer simulations of liquid/vapor interface in Lennard-Jones fluids: some questions and answers. J Chem Phys. 1999;111:8510–8523.10.1063/1.480192
  • Pàmies JC, McCabe C, Cummings PT, et al. Coexistence densities of methane and propane by canonical molecular dynamics and Gibbs ensemble Monte Carlo simulations. Mol Simul. 2003;29:463–470.10.1080/0892702031000117270
  • Dubbeldam D, Frost H, Walton KS, et al. Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. Fluid Phase Equilib. 2007;261:152–161.10.1016/j.fluid.2007.07.042
  • Fischer M, Gomes JRB, Jorge M. Computational approaches to study adsorption in MOFs with unsaturated metal sites. Mol Simul. 2014;40:537–556.10.1080/08927022.2013.829228
  • Rana MK, Koh HS, Zuberi H, et al. Methane storage in metal-substituted metal-organic frameworks: thermodynamics, usable capacity, and the impact of enhanced binding sites. J Phys Chem C. 2014;118:2929–2942.10.1021/jp4104273
  • Koh HS, Rana MK, Wong-Foy AG, et al. Predicting methane storage in open-metal-site metal-organic frameworks. J Phys Chem C. 2015;119:13451–13458.10.1021/acs.jpcc.5b02768

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.