1,967
Views
21
CrossRef citations to date
0
Altmetric
Energy Applications

Practical principles of density functional theory for catalytic reaction simulations on metal surfaces – from theory to applications

, , , &
Pages 861-885 | Received 02 Dec 2016, Accepted 28 Feb 2017, Published online: 24 Mar 2017

References

  • Ertl G. Surface science and catalysis – studies on the mechanism of ammonia-synthesis – the Emmett, P.H. Award address. Cat Rev Sci Eng. 1980;21:201–223.10.1080/03602458008067533
  • Ertl G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew Chem Int Ed. 2008;47:3524–3535.10.1002/(ISSN)1521-3773
  • Sitthisa S, Resasco DE. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Lett. 2011;141:784–791.10.1007/s10562-011-0581-7
  • Rostrup-Nielsen JR. Catalytic steam reforming. Catalysis. 1984;5:1–117.
  • Besenbacher F, Chorkendorff I, Clausen BS, et al. Design of a surface alloy catalyst for steam reforming. Science. 1998;279:1913–1915.10.1126/science.279.5358.1913
  • Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature. 2002;418:964–967.10.1038/nature01009
  • Bosch C. The development of the chemical high-pressure method during the establishment of the new ammonia industry, Nobel Lecture”, (1932).
  • Mittasch A. Early studies of multicomponent catalysts. Adv Catal. 1950;2:81–104.
  • Emmett PH, Brunauer S. The adsorption of nitrogen by iron synthetic ammonia catalysts. J Am Chem Soc. 1934;56:35–41.10.1021/ja01316a011
  • Stoltze P, Nørskov JK. Bridging the pressure gap between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys Rev Lett. 1985;55:2502–2505.10.1103/PhysRevLett.55.2502
  • Stoltze P, Nørskov JK. A description of the high-pressure ammonia-synthesis reaction based on surface science. J Vac Sci Technol A Vac Surf Films. 1987;5:581–585.10.1116/1.574677
  • Stoltze P, Nørskov JK. An interpretation of the high-pressure kinetics of ammonia-synthesis based on a microscopic model. J Catal. 1988;110:1–10.10.1016/0021-9517(88)90291-6
  • Stoltze P, Nørskov JK. The application of surface kinetic data to the industrial synthesis of ammonia – comment. Surf Sci. 1988;197:L230–L232.10.1016/0039-6028(88)90567-5
  • Stoltze P, Nørskov JK. The surface science based ammonia kinetics revisited. Top Catal. 1994;1:253–263.10.1007/BF01492279
  • Christoffersen E, Mortensen JJ, Stoltze P, et al. N2 interaction with Fe surfaces. Isr J Chem. 1998;38:279–284.10.1002/ijch.v38:4
  • Dahl S, Logadottir A, Egeberg RC, et al. Role of steps in N2 activation on Ru(0 0 0 1). Phys Rev Lett. 1999;83:1814–1817.10.1103/PhysRevLett.83.1814
  • Dahl S, Logadottir A, Jacobsen CJH, et al. Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl Catal A. 2001;222:19–29.10.1016/S0926-860X(01)00826-2
  • Boisen A, Dahl S, Nørskov JK, et al. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J Catal. 2005;230:309–312.10.1016/j.jcat.2004.12.013
  • Honkala K, Hellman A, Remediakis IN, et al. Ammonia synthesis from first-principles calculations. Science. 2005;307:555–558.10.1126/science.1106435
  • Jacobsen CJH, Dahl S, Clausen BS, et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J Am Chem Soc. 2001;123:8404–8405.10.1021/ja010963d
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138.10.1103/PhysRev.140.A1133
  • http://www.iue.tuwien.ac.at/phd/goes/dissse14.html.in.
  • Gonze X, Beuken JM, Caracas R, et al. First-principles computation of material properties: the ABINIT software project. Comput Mater Sci. 2002;25:478–492.10.1016/S0927-0256(02)00325-7
  • Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Kristallogr. 2005;220:567–570.
  • CPMD. Available from: http://www.cpmd.org.in.
  • Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke–Ernzerhof functionals. Phys Rev B. 1999;59:7413–7421.10.1103/PhysRevB.59.7413
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21: 395502–395520.
  • Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B. 1993;48:13115–13118.10.1103/PhysRevB.48.13115
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.10.1016/0927-0256(96)00008-0
  • Kittel C. Introduction to solid state physics. 7th ed. New York (NY): Wiley; 1996.
  • Chadi DJ, Cohen ML. Special points in Brillouin zone. Phys Rev B. 1973;8:5747–5753.10.1103/PhysRevB.8.5747
  • Monkhorst HJ, Pack JD. Special points for Brillouin zone integrations. Phys Rev B. 1976;13:5188–5192.10.1103/PhysRevB.13.5188
  • Hamann DR, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys Rev Lett. 1979;43:1494–1497.10.1103/PhysRevLett.43.1494
  • Hamann DR. Generalized norm-conserving pseudopotentials. Phys Rev B. 1989;40:2980–2987.10.1103/PhysRevB.40.2980
  • Vanderbilt D. Optimally smooth norm-conserving pseudopotentials. Phys Rev B. 1985;32:8412–8415.
  • Bachelet GB, Hamann DR, Schlüter M. Pseudopotentials that work: from H to Pu. Phys Rev B. 1982;26:4199–4228.10.1103/PhysRevB.26.4199
  • Bachelet GB, Schlüter M. Relativistic norm-conserving pseudopotentials. Phys Rev B. 1982;25:2103–2108.10.1103/PhysRevB.25.2103
  • Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J Phys Condens Matter. 1994;6:8245–8257.10.1088/0953-8984/6/40/015
  • Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–7895.10.1103/PhysRevB.41.7892
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1775.10.1103/PhysRevB.59.1758
  • Perdew JP, Ruzsinszky A, Tao JM, et al. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J Chem Phys. 2005;123:062201–062209.
  • Car R. Density functional theory: fixing Jacob’s ladder. Nat Chem. 2016;8:820–821.10.1038/nchem.2605
  • Perdew JP, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc. 2001;577:1–20.
  • Jones RO. Energy surfaces of low-lying states of O3 and SO2. J Chem Phys. 1985;82:325–332.10.1063/1.448804
  • Müller JE, Harris J. Cluster study of the interaction of a water molecule with an aluminum surface. Phys Rev Lett. 1984;53:2493–2496.10.1103/PhysRevLett.53.2493
  • Lang ND, Nørskov JK. Interaction of helium with a metal-surface. Phys Rev B. 1983;27:4612–4616.10.1103/PhysRevB.27.4612
  • Grossman JC, Mitas L, Raghavachari K. Structure and stability of molecular carbon: importance of electron correlation. Phys Rev Lett. 1995;75:3870–3873.10.1103/PhysRevLett.75.3870
  • Hammer B, Scheffler M, Jacobsen KW, et al. Multidimensional potential-energy surface for H2 dissociation over Cu(111). Phys Rev Lett. 1994;73:1400–1403.10.1103/PhysRevLett.73.1400
  • Zoroddu A, Bernardini F, Ruggerone P, et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory. Phys. Rev. B. 2001;64:045208.
  • Haas P, Tran F, Blaha P. Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B. 2009;79:085104–085110.
  • Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B. 1992;45:13244–13249.10.1103/PhysRevB.45.13244
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008;100:136406.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A. 1988;38:3098–3100.10.1103/PhysRevA.38.3098
  • Lee CT, Yang WT, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.10.1103/PhysRevB.37.785
  • Mavrikakis M, Rempel J, Greeley J, et al. Atomic and molecular adsorption on Rh(111). J Chem Phys. 2002;117:6737–6744.10.1063/1.1507104
  • Pederson MR. Density-functional based determination of the CH3–CH4 hydrogen exchange reaction barrier. Chem Phys Lett. 1994;230:54–60.10.1016/0009-2614(94)01120-6
  • Tedder JM. Which factors determine the reactivity and regioselectivity of free-radical substitution and addition-reactions. Angew Chem Int (English Ed). 1982;21:401–410.10.1002/(ISSN)1521-3773
  • Becke AD. A new inhomogeneity parameter in density-functional theory. J Chem Phys. 1998;109:2092–2098.10.1063/1.476722
  • Tao J, Perdew JP, Staroverov VN, et al. Climbing the density functional ladder: nonempirical Meta\char21{}generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401.10.1103/PhysRevLett.91.146401
  • Sun J, Marsman M, Csonka GI, et al. Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Phys Rev B. 2011;84:035117.10.1103/PhysRevB.84.035117
  • Zhao Y, Truhlar DG. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101.10.1063/1.2370993
  • Perdew JP, Kurth S, Zupan A, et al. Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys Rev Lett. 1999;82:2544–2547.10.1103/PhysRevLett.82.2544
  • Medasani B, Haranczyk M, Canning A, et al. Vacancy formation energies in metals: a comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Comput Mater Sci. 2015;101:96–107.10.1016/j.commatsci.2015.01.018
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–5652.10.1063/1.464913
  • Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–789.10.1103/PhysRevB.37.785
  • Adamo C, Barone V. Toward chemical accuracy in the computation of NMR shieldings: the PBE0 model. Chem Phys Lett. 1998;298:113–119.10.1016/S0009-2614(98)01201-9
  • Bach RD, Glukhovtsev MN, Gonzalez C, et al. Nature of the transition structure for alkene epoxidation by peroxyformic acid, dioxirane, and dimethyldioxirane: a comparison of B3LYP density functional theory with higher computational levels. J Phys Chem A. 1997;101:6092–6100.10.1021/jp970378s
  • Jursic BS. C–H and C–halogen bond dissociation energies for fluorinated and chlorinated methane evaluated with hybrid B3LYP density functional theory methods and their comparison with experimental data and the CBS-Q ab initio computational approach. J Mol Struct (Thoechem). 1998;422:253–257.10.1016/S0166-1280(97)00114-0
  • Bouzzine SM, Bouzakraoui S, Bouachrine M, et al. Density functional theory (B3LYP/6-31G*) study of oligothiophenes in their aromatic and polaronic states. J Mol Struct (Thoechem). 2005;726:271–276.10.1016/j.theochem.2005.04.023
  • Cai Z-L, Crossley MJ, Reimers JR, et al. Density functional theory for charge transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B. 2006;110:15624–15632.10.1021/jp063376t
  • Siegbahn PEM, Blomberg MRA, Blomberg ML. Theoretical study of the energetics of proton pumping and oxygen reduction in cytochrome oxidase. J Phys Chem B. 2003;107:10946–10955.10.1021/jp035486v
  • Klimes J, Michaelides A. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys. 2012;137:120901–120912.
  • Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem. 2004;25:1463–1473.10.1002/(ISSN)1096-987X
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys. 2010;132:154104–154119.
  • Tkatchenko A, Scheffler M. Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 2009;102:073005–073008.10.1103/PhysRevLett.102.073005
  • Rydberg H, Lundqvist BI, Langreth DC, et al. Tractable nonlocal correlation density functionals for flat surfaces and slabs. Phys Rev B. 2000;62:6997–7006.10.1103/PhysRevB.62.6997
  • Dion M, Rydberg H, Schröder E, et al. Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92:246401–246404.10.1103/PhysRevLett.92.246401
  • Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matter. 2010;22:022201–022205.10.1088/0953-8984/22/2/022201
  • Wellendorff J, Lundgaard KT, Møgelhøj A, et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B. 2012;85:235149–235171.10.1103/PhysRevB.85.235149
  • Morgan BJ, Watson GW. A density functional theory plus U study of oxygen vacancy formation at the (110), (100), (101), and (001) surfaces of rutile TiO2. J Phys Chem C. 2009;113:7322–7328.10.1021/jp811288n
  • Di Valentin C, Pacchioni G, Selloni A. Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C. 2009;113:20543–20552.10.1021/jp9061797
  • Hu ZP, Metiu H. Choice of U for DFT plus U calculations for titanium oxides. J Phys Chem C. 2011;115:5841–5845.10.1021/jp111350u
  • Fabris S, de Gironcoli S, Baroni S, et al. Taming multiple valency with density functionals: a case study of defective ceria. Phys Rev B. 2005;71:041102-041104.
  • Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev. 2013;113:3949–3985.10.1021/cr3004949
  • Tang J-J, Liu B. Reactivity of the Fe2O3(0 0 0 1) surface for methane oxidation: a GGA + U Study. J Phys Chem C. 2016;120:6642–6650.10.1021/acs.jpcc.6b00374
  • Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B. 1998;57:1505–1509.10.1103/PhysRevB.57.1505
  • Cohen AJ, Mori-Sanchez P, Yang WT. Insights into current limitations of density functional theory. Science. 2008;321:792–794.10.1126/science.1158722
  • Himmetoglu B, Floris A, de Gironcoli S, et al. Hubbard-corrected DFT energy functionals: the LDA+U description of correlated systems. Int J Quantum Chem. 2014;114:14–49.10.1002/qua.v114.1
  • Anisimov VI, Zaanen J, Andersen OK. Band thoery and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943–954.10.1103/PhysRevB.44.943
  • Anisimov VI, Aryasetiawan F, Lichtenstein A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J Phys Condens Matter. 1997;9:767–808.10.1088/0953-8984/9/4/002
  • Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B. 2006;73:195107–195112.10.1103/PhysRevB.73.195107
  • Mosey NJ, Carter EA. Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys Rev B. 2007;76:155123-13.
  • Kulik HJ, Cococcioni M, Scherlis DA, et al. Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett. 2006;97:103001-103004.
  • Xu ZN, Rossmeisl J, Kitchin JR. A linear response DFT plus U study of trends in the oxygen evolution activity of transition metal rutile dioxides. J Phys Chem C. 2015;119:4827–4833.10.1021/jp511426q
  • Langmuir I. Part II. – ‘Heterogeneous reactions’. Chemical reactions on surfaces. Trans Faraday Soc. 1922;17:607–620.10.1039/TF9221700607
  • Árnadóttir L, Stuve EM, Jónsson H. Adsorption of water monomer and clusters on platinum(111) terrace and related steps and kinks. Surf Sci. 2010;604:1978–1986.10.1016/j.susc.2010.08.007
  • Fajín JLC, Cordeiro M, Gomes JRB. Adsorption of atomic and molecular oxygen on the Au(321) surface: DFT study. J Phys Chem C. 2007;111:17311–17321.10.1021/jp073796y
  • Carabineiro SAC, Nieuwenhuys BE. Adsorption of small molecules on gold single crystal surfaces. Gold Bull. 2009;42:288–301.
  • Bray JM, Schneider WF. Potential energy surfaces for oxygen adsorption, dissociation, and diffusion at the Pt(321) surface. Langmuir. 2011;27:8177–8186.10.1021/la2012028
  • Bray JM, Smith JL, Schneider WF. Coverage-dependent adsorption at a low symmetry surface: DFT and statistical analysis of oxygen chemistry on kinked Pt(321). Top Catal. 2014;57:89–105.10.1007/s11244-013-0165-4
  • Held G, Jones LB, Seddon EA, et al. Effect of oxygen adsorption on the Chiral Pt{531} surface. J Phys Chem B. 2005;109:6159–6163.
  • Rampulla DM, Gellman AJ, Sholl DS. Bromine atom diffusion on stepped and kinked copper surfaces. Surf Sci. 2006;600:2171–2177.10.1016/j.susc.2006.03.006
  • Strasser P, Koh S, Greeley J. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Phys Chem Chem Phys. 2008;10:3670–3683.10.1039/b803717e
  • Boettger JC. Nonconvergence of surface energies obtained from thin-film calculations. Phys Rev B. 1994;49:16798–16800.10.1103/PhysRevB.49.16798
  • Da Silva JLF, Stampfl C, Scheffler M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surf Sci. 2006;600:703–715.10.1016/j.susc.2005.12.008
  • Singh-Miller NE, Marzari N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys Rev B. 2009;80:235407–235415.10.1103/PhysRevB.80.235407
  • Fall C. Ab initio study of the work functions of elemental metal crystals. PhD thesis. Lausanne: Department of Physics, École polytechnique fédérale de Lausanne; 1999. p. 139.
  • Yu WT, Porosoff MD, Chen JGG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev. 2012;112:5780–5817.10.1021/cr300096b
  • Menning CA, Chen JG. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures. J Chem Phys. 2008;128:164703–164712.10.1063/1.2900962
  • Ruban AV, Skriver HL, Nørskov JK. Surface segregation energies in transition-metal alloys. Phys Rev B. 1999;59:15990–16000.10.1103/PhysRevB.59.15990
  • Kitchin JR, Reuter K, Scheffler M. Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys Rev B. 2008;77:075437.
  • Wang GF, Van Hove MA, Ross PN, et al. Monte Carlo simulations of segregation in Pt–Ni catalyst nanoparticles. J Chem Phys. 2005;122:024706–024718.10.1063/1.1828033
  • Sanchez JM, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems. Phys A. 1984;128:334–350.10.1016/0378-4371(84)90096-7
  • van de Walle A, Ceder G. Automating first-principles phase diagram calculations. J Phase Equilib. 2002;23:348–359.10.1361/105497102770331596
  • Lei Y, Liu B, Lu J, et al. Synthesis of Pt–Pd core–shell nanostructures by atomic layer deposition: application in propane oxidative dehydrogenation to propylene. Chem Mater. 2012;24:3525–3533.10.1021/cm300080w
  • Rodriguez JA. Physical and chemical properties of bimetallic surfaces. Surf Sci Rep. 1996;24:225–287.
  • Groß A. Reactivity of bimetallic systems studied from first principles. Top Catal. 2006;37:29–39.
  • Chen JG, Menning CA, Zellner MB. Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep. 2008;63:201–254.10.1016/j.surfrep.2008.02.001
  • Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem. 2010;2:454–460.10.1038/nchem.623
  • Mavrikakis M, Hammer B, Nørskov JK. Effect of strain on the reactivity of metal surfaces. Phys Rev Lett. 1998;81:2819–2822.10.1103/PhysRevLett.81.2819
  • Kitchin JR, Nørskov JK, Barteau MA, et al. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys. 2004;120:10240–10246.10.1063/1.1737365
  • Kitchin JR, Nørskov JK, Barteau MA, et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett. 2004;93:156801–156804.
  • Claus P. Selective hydrogenation of alpha, beta-unsaturated aldehydes and other C=O and C=C bonds containing compounds. Top Catal. 1998;5:51–62.10.1023/A:1019177330810
  • Huber GW, Shabaker JW, Dumesic JA. Raney Ni–Sn catalyst for H-2 production from biomass-derived hydrocarbons. Science. 2003;300:2075–2077.10.1126/science.1085597
  • Claus P. Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A. 2005;291:222–229.10.1016/j.apcata.2004.12.048
  • Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed. 2007;46:7164–7183.10.1002/(ISSN)1521-3773
  • Turner JA. A realizable renewable energy future. Science. 1999;285:687–689.10.1126/science.285.5428.687
  • Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–358.10.1038/35104634
  • Greeley J, Jaramillo TF, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5:909–913.10.1038/nmat1752
  • Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys. 2012;14:1235–1245.10.1039/C1CP22271F
  • Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans. 1989;85(8):2309–2326.10.1039/f19898502309
  • Nilges P, Schröder U. Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ Sci. 2013;6:2925–2931.10.1039/c3ee41857j
  • Greeley J, Mavrikakis M. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. J Phys Chem B. 2005;109:3460–3471.10.1021/jp046540q
  • Basile A, Gallucci F, Tosti S. Synthesis, characterization, and applications of palladium membranes. New york (NY): Elsevier; 2008.10.1016/S0927-5193(07)13008-4
  • Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nat Mater. 2004;3:810–815.10.1038/nmat1223
  • Lucci FR, Darby MT, Mattera MFG, et al. Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys. J Phys Chem Lett. 2016;7:480–485.10.1021/acs.jpclett.5b02400
  • Wang B. Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources. 2005;152:1–15.
  • Zhang JL, Vukmirovic MB, Xu Y, et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie-International Edition. 2005;44:2132–2135.10.1002/(ISSN)1521-3773
  • Remediakis IN, Lopez N, Nørskov JK. CO oxidation on rutile-supported Au nanoparticles. Angew Chem Int Ed. 2005;44:1824–1826.10.1002/anie.200461699
  • Stamenkovic V, Mun BS, Mayrhofer KJJ, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed. 2006;45:2897–2901.10.1002/(ISSN)1521-3773
  • Alayoglu S, Nilekar AU, Mavrikakis M, et al. Ru–Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater. 2008;7:333–338.10.1038/nmat2156
  • Getman RB, Xu Y, Schneider WF. Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J Phys Chem C. 2008;112:9559–9572.10.1021/jp800905a
  • Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108:17886–17892.10.1021/jp047349j
  • Nilekar AU, Xu Y, Zhang JL, et al. Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal. 2007;46:276–284.10.1007/s11244-007-9001-z
  • Greeley J, Stephens IEL, Bondarenko AS, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem. 2009;1:552–556.10.1038/nchem.367
  • Xu Y, Mavrikakis M. The adsorption and dissociation of O2 molecular precursors on Cu: the effect of steps. Surf Sci. 2003;538:219–232.10.1016/S0039-6028(03)00787-8
  • Li T, Bhatia B, Sholl DS. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces. J Chem Phys. 2004;121:10241–10249.10.1063/1.1808424
  • Ford DC, Xu Y, Mavrikakis M. Atomic and molecular adsorption on Pt(111). Surf Sci. 2005;587:159–174.10.1016/j.susc.2005.04.028
  • Herron JA, Tonelli S, Mavrikakis M. Atomic and molecular adsorption on Pd(111). Surf Sci. 2012;606:1670–1679.10.1016/j.susc.2012.07.003
  • Hahn K, Mavrikakis M. Atomic and molecular adsorption on Re(0 0 0 1). Top Catal. 2014;57:54–68.10.1007/s11244-013-0162-7
  • Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on Cu(111): thermochemistry, reaction barrier and the effect of strain. Surf Sci. 2001;494:131–144.10.1016/S0039-6028(01)01464-9
  • Xu Y, Mavrikakis M. Adsorption and dissociation of O2 on Ir(111). J Chem Phys. 2002;116:10846–10853.10.1063/1.1479716
  • Xu Y, Ruban AV, Mavrikakis M. Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J Am Chem Soc. 2004;126:4717–4725.10.1021/ja031701+
  • Bray JM, Skavdahl IJ, McEwen JS, et al. First-principles reaction site model for coverage-sensitive surface reactions: Pt(111)-O temperature programmed desorption. Surf Sci. 2014;622:L1–L6.10.1016/j.susc.2013.12.005
  • Kurth S, Perdew JP, Blaha P. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int J Quantum Chem. 1999;75:889–909.10.1002/(ISSN)1097-461X
  • Tarasevich MR, Sadkowski A, Yeager E. Comprehensive treatise of electrochemistry. New York (NY): Plenum Press; 1983.
  • Liu B, Zhou M, Chan MKY, et al. Understanding polyol decomposition on bimetallic Pt–Mo catalysts-A DFT study of glycerol. ACS Catal. 2015;5:4942–4950.10.1021/acscatal.5b01127
  • Grenoble D. The chemistry and catalysis of the water gas shift reaction 1. The kinetics over supported metal catalysts. J Catal. 1981;67:90–102.10.1016/0021-9517(81)90263-3
  • Newsome DS. The water–gas shift reaction. Catal Rev Sci Eng. 2006;21:275–318.
  • Sie ST, Senden MMG, Wechem HMHV. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS). Catal Today. 1991;8:371–394.10.1016/0920-5861(91)80058-H
  • Lunsford JH. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today. 2000;63:165–174.10.1016/S0920-5861(00)00456-9
  • Bunluesin T, Gorte RJ, Graham GW. CO oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts. Appl Catal B Environ. 1997;14:105–115.10.1016/S0926-3373(97)00016-7
  • Chatterjee D, Deutschmann O, Warnatz J. Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss. 2001;119:371–384.10.1039/b101968f
  • Baschuk JJ, Li XG. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res. 2001;25:695–713.10.1002/(ISSN)1099-114X
  • Cheng X, Shi Z, Glass N, et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources. 2007;165:739–756.10.1016/j.jpowsour.2006.12.012
  • Bradshaw AM, Hoffmann FM. Chemisorption of carbon-monoxide on palladium single-crystal surfaces – IR spectroscopic evidence for localized site adsorption. Surf Sci. 1978;72:513–535.10.1016/0039-6028(78)90367-9
  • Balakrishnan K, Sachdev A, Schwank L. Chemisorption and FTIR study of bimetallic Pt–Au/SiO2 catalysts. J Catal. 1990;121:441–455.10.1016/0021-9517(90)90252-F
  • Stakheev AY, Shpiro ES, Tkachenko OP, et al. Evidence for monatomic platinum species in H-ZSM-5 from FTIR spectroscopy of chemisorbed CO. J Catal. 1997;169:382–388.10.1006/jcat.1997.1716
  • Tabakova T, Boccuzzi FB, Manzoli M, et al. FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Appl Catal A. 2003;252:385–397.10.1016/S0926-860X(03)00493-9
  • Chiorino A, Manzoli M, Menegazzo F, et al. New insight on the nature of catalytically active gold sites: quantitative CO chemisorption data and analysis of FTIR spectra of adsorbed CO and of isotopic mixtures. J Catal. 2009;262:169–176.10.1016/j.jcat.2008.12.017
  • Lu JL, Low KB, Lei Y, et al. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat Commun. 2014;5:3264–3269.
  • Crossley A, King DA. Infrared-spectra for CO isotopes chemisorbed on Pt 111 – evidence for strong absorbate coupling interactions. Surf Sci. 1977;68:528–538.
  • Eastman DE, Cashion JK. Photoemission energy-level measurements of chemisorbed CO and O on Ni. Phys Rev Lett. 1971;27:1520–1523.10.1103/PhysRevLett.27.1520
  • Doyen G, Ertl G. Theory of carbon-monoxide chemisorption on transition-metals. Surf Sci. 1974;43:197–229.10.1016/0039-6028(74)90228-3
  • Ertl G, Neumann M, Streit KM. Chemisorption of CO on Pt(111) surface. Surf Sci. 1977;64:393–410.10.1016/0039-6028(77)90052-8
  • Steininger H, Lehwald S, Ibach H. On the adsorption of CO on Pt(111). Surf Sci. 1982;123:264–282.10.1016/0039-6028(82)90328-4
  • Hammer B, Morikawa Y, Nørskov JK. CO chemisorption at metal surfaces and overlayers. Phys Rev Lett. 1996;76:2141–2144.10.1103/PhysRevLett.76.2141
  • Hammer B, Nielsen OH, Nørskov JK. Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal Lett. 1997;46:31–35.10.1023/A:1019073208575
  • Loffreda D, Simon D, Sautet P. Dependence of stretching frequency on surface coverage and adsorbate-adsorbate interactions: a density-functional theory approach of CO on Pd (111). Surf Sci. 1999;425:68–80.10.1016/S0039-6028(99)00186-7
  • Shah V, Li T, Baumert KL, et al. A comparative study of CO chemisorption on flat and stepped Ni surfaces using density functional theory. Surf Sci. 2003;537:217–227.10.1016/S0039-6028(03)00616-2
  • Feibelman PJ, Hammer B, Nørskov JK, et al. The CO/Pt(111) puzzle. J Phys Chem B. 2001;105:4018–4025.10.1021/jp002302t
  • Grinberg I, Yourdshahyan Y, Rappe AM. CO on Pt(111) puzzle: a possible solution. J Chem Phys. 2002;117:2264–2270.10.1063/1.1488596
  • Mason SE, Grinberg I, Rappe AM. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys Rev B. 2004;69:161401–161404.
  • Meng S, Wang EG, Gao SW. Water adsorption on metal surfaces: a general picture from density functional theory studies. Phys Rev B. 2004;69:195404–195413.
  • Carrasco J, Hodgson A, Michaelides A. A molecular perspective of water at metal interfaces. Nat Mater. 2012;11:667–674.
  • Mavrikakis M, Barteau MA. Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A Chem. 1998;131:135–147.10.1016/S1381-1169(97)00261-6
  • Greeley J, Mavrikakis M. A first-principles study of methanol decomposition on Pt(111). J Am Chem Soc. 2002;124:7193–7201.10.1021/ja017818k
  • Salciccioli M, Chen Y, Vlachos DG. Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J Phys Chem C. 2010;114:20155–20166.10.1021/jp107836a
  • Kandoi S, Greeley J, Simonetti D, et al. Reaction kinetics of ethylene glycol reforming over platinum in the vapor versus aqueous phases. J Phys Chem C. 2011;115:961–971.10.1021/jp104136s
  • Liu B, Greeley J. Density functional theory study of selectivity considerations for C–C versus C–O bond scission in glycerol decomposition on Pt(111). Top Catal. 2012;55:280–289.10.1007/s11244-012-9806-2
  • Kua J, Faglioni F, Goddard WA. Thermochemistry for hydrocarbon intermediates chemisorbed on metal surfaces: CHn–m(CH3)(m) with n = 1, 2, 3 and m <= n on Pt, Ir, Os, Pd, Ph, and Ru. J Am Chem Soc. 2000;122:2309–2321.10.1021/ja993336l
  • Greeley J, Mavrikakis M. Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc. 2004;126:3910–3919.10.1021/ja037700z
  • Sexton BA. Methanol decomposition on platinum (111). Surf Sci. 1981;102:271–281.10.1016/0039-6028(81)90321-6
  • Ehlers DH, Spitzer A, Lüth H. The adsorption of methanol on Pt(111), an IR reflection and UV photoemission-study. Surf Sci. 1985;160:57–69.10.1016/0039-6028(85)91026-X
  • Liu B, Greeley J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J Phys Chem C. 2011;115:19702–19709.10.1021/jp202923w
  • Liu B, Greeley J. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces. Phys Chem Chem Phys. 2013;15:6475–6485.10.1039/c3cp44088e
  • Chen Y, Salciccioli M, Vlachos DG. An efficient reaction pathway search method applied to the decomposition of glycerol on platinum. J Phys Chem C. 2011;115:18707–18720.10.1021/jp205483m
  • Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces. Surf Sci. 1995;343:211–220.10.1016/0039-6028(96)80007-0
  • Hammer B, Nørskov JK. Why gold is the noblest of all the metals. Nature. 1995;376:238–240.10.1038/376238a0
  • Hammer B, Nørskov JK, Theoretical surface science and catalysis – calculations and concepts. Adv Catal. 2000;45:71–129.
  • Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Letters. 2007;99:016105–016101.10.1103/PhysRevLett.99.016105
  • Montemore MM, Medlin JW. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal Sci Technol. 2014;4:3748–3761.10.1039/C4CY00335G
  • Fernandez EM, Moses PG, Toftelund A, et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed. 2008;47:4683–4686.10.1002/(ISSN)1521-3773
  • Studt F, Abild-Pedersen F, Bligaard T, et al. On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew Chem Int Ed. 2008;47:9299–9302.10.1002/anie.v47:48
  • Jones G, Jakobsen JG, Shim SS, et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal. 2008;259:147–160.
  • Jones G, Studt F, Abild-Pedersen F, et al. Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chem Eng Sci. 2011;66:6318–6323.10.1016/j.ces.2011.02.050
  • Greeley J. Threoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng. 2016;7:1–31.
  • Le TH-M, Liu B, Huynh LK. SurfKin: an ab initio kinetic code for modeling surface reactions. J Comput Chem. 2014;35:1890–1899.10.1002/jcc.v35.26
  • Henkelman G, Jóhannesson G, Jósson H. Methods for finding saddle points and minimum energy paths. In: Schwartz SD, editor. Theoretical methods in condensed phase chemistry. New York (NY): Kluwer Academic; 2000. p. 269–300.
  • Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000;113:9901–9904.10.1063/1.1329672
  • Mills G, Jónsson H. Quantum and thermal effects in H2 dissociative adsorption – evaluation of free-energy barriers in multidimensional quantum-systems. Phys Rev Lett. 1994;72:1124–1127.10.1103/PhysRevLett.72.1124
  • Halgren TA, Lipscomb WN. Synchronous-transit method for determining reaction pathways and locating molecular transition-states. Chem Phys Lett. 1977;49:225–232.10.1016/0009-2614(77)80574-5
  • Fischer S, Karplus M. Conjugate peak refinement – an algorithm for finding reaction paths and accurate transition-states in systems with many degrees of freedom. Chem Phys Lett. 1992;194:252–261.10.1016/0009-2614(92)85543-J
  • Ionova IV, Carter EA. Ridge method for finding saddle-points on potential-energy surfaces. J Chem Phys. 1993;98:6377–6386.10.1063/1.465100
  • Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys. 1999;111:7010–7022.10.1063/1.480097
  • Liu B, Cheng L, Curtiss L, et al. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces. Surf Sci. 2014;622:51–59.10.1016/j.susc.2013.12.001
  • Nørskov JK, Bligaard T, Logadottir A, et al. Universality in heterogeneous catalysis. J Catal. 2002;209:275–278.10.1006/jcat.2002.3615
  • Wang S, Petzold V, Tripkovic V, et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys. 2011;13:20760–20765.10.1039/c1cp20547a
  • Wang S, Temel B, Shen J, et al. Universal Bronsted–Evans–Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett. 2011;141:370–373.10.1007/s10562-010-0477-y
  • Vojvodic A, Calle-Vallejo F, Guo W, et al. On the behavior of Bronsted–Evans–Polanyi relations for transition metal oxides. J Chem Phys. 2011;134:244509.
  • Viñes F, Vojvodic A, Abild-Pedersen F, et al. Brønsted–Evans–Polanyi relationship for transition metal carbide and transition metal oxide surfaces. J Phys Chem C. 2013;117:4168–4171.10.1021/jp312671z
  • Zaffran J, Michel C, Delbecq F, et al. Trade-off between accuracy and universality in linear energy relations for alcohol dehydrogenation on transition metals. J Phys Chem C. 2015;119:12988–12998.10.1021/acs.jpcc.5b01703
  • Stegelmann C, Andreasen A, Campbell CT. Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc. 2009;131:8077–8082.10.1021/ja9000097
  • Nørskov JK, Bligaard T, Kleis J. Rate control and reaction engineering. Science. 2009;324:1655–1656.10.1126/science.1174885
  • Gokhale AA, Kandoi S, Greeley JP, et al. Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chem Eng Sci. 2004;59:4679–4691.10.1016/j.ces.2004.09.038
  • Mhadeshwar AB, Vlachos DG. Microkinetic modeling for water-promoted CO oxidation, water−gas shift, and preferential oxidation of CO on Pt. J Phys Chem B. 2004;108:15246–15258.10.1021/jp048698g
  • Madon RJ, Braden D, Kandoi S, et al. Microkinetic analysis and mechanism of the water–gas shift reaction over copper catalysts. J Catal. 2011;281:1–11.10.1016/j.jcat.2011.03.008
  • Medford AJ, Shi C, Hoffmann MJ, et al. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal Lett. 2015;145:794–807.10.1007/s10562-015-1495-6
  • Neurock M. Perspectives on the first principles elucidation and the design of active sites. J Catal. 2003;216:73–88.10.1016/S0021-9517(02)00115-X
  • Reuter K, Scheffler M. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys Rev B. 2006;73:045433–045449.10.1103/PhysRevB.73.045433
  • Zhdanov VP, Kasemo B. Kinetics of rapid heterogeneous reactions on the nanometer scale. J Catal. 1997;170:377–389.10.1006/jcat.1997.1747
  • Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem. 2009;1:37–46.10.1038/nchem.121
  • Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem. 2011;660:254–260.10.1016/j.jelechem.2010.10.004
  • Man IC, Su H-Y, Calle-Vallejo F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011;3:1159–1165.10.1002/cctc.v3.7
  • Gorlin Y, Jaramillo TF. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc. 2010;132:13612–13614.10.1021/ja104587v
  • Zhu YL, Su C, Xu XM, et al. A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. Chem A Eur J. 2014;20:15533–15542.10.1002/chem.v20.47
  • Appl M. Ammonia. Dannstadt-Schauernheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2006.
  • Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure. Science. 1998;282:98–100.
  • Lerch M, Janek J, Becker KD, et al. Oxide nitrides: from oxides to solids with mobile nitrogen ions. Prog Solid State Chem. 2009;37:81–131.10.1016/j.progsolidstchem.2009.11.004
  • Skodra A, Stoukides M. Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics. 2009;180:1332–1336.10.1016/j.ssi.2009.08.001
  • Amar IA, Lan R, Petit CTG, et al. Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem. 2011;15:1845–1860.10.1007/s10008-011-1376-x
  • Giddey S, Badwal SPS, Kulkarni A. Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energy. 2013;38:14576–14594.10.1016/j.ijhydene.2013.09.054
  • van der Ham CJM, Koper MTM, Hetterscheid DGH. Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev. 2014;43:5183–5191.10.1039/C4CS00085D
  • Michalsky R, Parman BJ, Amanor-Boadu V, et al. Solar thermochemical production of ammonia from water, air and sunlight: thermodynamic and economic analyses. Energy. 2012;42:251–260.10.1016/j.energy.2012.03.062
  • Michalsky R, Pfromm PH. Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure. AIChE J. 2012;58:3203–3213.10.1002/aic.v58.10
  • Michalsky R, Avram AM, Peterson BA, et al. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chem Sci. 2015;6:3965–3974.10.1039/C5SC00789E
  • Michalsky R, Pfromm PH, Steinfeld A. Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus. 2015;5:20140084.
  • Einsle O, Tezcan FA, Andrade SLA, et al. Nitrogenase MoFe-protein at 1.16 angstrom resolution: a central ligand in the FeMo-cofactor. Science. 2002;297:1696–1700.10.1126/science.1073877
  • Yandulov DV, Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science. 2003;301:76–78.10.1126/science.1085326
  • Hinnemann B, Nørskov JK. Modeling a central ligand in the nitrogenase FeMo cofactor. J Am Chem Soc. 2003;125:1466–1467.10.1021/ja029041g
  • Schimpl J, Petrilli HM, Blöchl PE. Nitrogen binding to the FeMo-cofactor of nitrogenase. J Am Chem Soc. 2003;125:15772–15778.10.1021/ja0367997
  • Hinnemann B, Nørskov JK. Catalysis by enzymes: the biological ammonia synthesis. Top Catal. 2006;37:55–70.10.1007/s11244-006-0002-0
  • Arashiba K, Miyake Y, Nishibayashi Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat Chem. 2011;3:120–125.10.1038/nchem.906
  • Zhao Z, Xia Z. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016;6:1553–1558.10.1021/acscatal.5b02731
  • Kauffman DR, Alfonso D, Tafen DN, et al. Electrocatalytic oxygen evolution with an atomically precise nickel catalyst. ACS Catal. 2016;6:1225–1234.10.1021/acscatal.5b02633
  • Lai SCS, Koper MTM. Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss. 2008;140:399–416.
  • Kortlever R, Shen J, Schouten KJP, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett. 2015;6:4073–4082.10.1021/acs.jpclett.5b01559
  • Luo WJ, Nie XW, Janik MJ, et al. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 2016;6:219–229.10.1021/acscatal.5b01967
  • Montoya JH, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem. 2015;8:2180–2186.10.1002/cssc.v8.13
  • Gálvez ME, Frei A, Meier F, et al. Production of AlN by carbothermal and methanothermal reduction of Al2O3 in a N2 flow using concentrated thermal radiation. Ind Eng Chem Res. 2009;48:528–533.10.1021/ie8011193
  • Gálvez ME, Halmann M, Steinfeld A. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses. Ind Eng Chem Res. 2007;46:2042–2046.10.1021/ie061550u
  • Ovesen CV, Stoltze P, Nørskov JK, et al. A kinetic-model of the water gas shift reaction. J Catal. 1992;134:445–468.10.1016/0021-9517(92)90334-E
  • Grabow LC, Gokhale AA, Evans ST, et al. Mechanism of the water–gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C. 2008;112:4608–4617.10.1021/jp7099702
  • Gokhale AA, Dumesic JA, Mavrikakis M. On the mechanism of low-temperature water–gas shift reaction on copper. J Am Chem Soc. 2008;130:1402–1414.10.1021/ja0768237
  • Schumacher N, Boisen A, Dahl S, et al. Trends in low-temperature water-gas shift reactivity on transition metals. J Catal. 2005;229:265–275.10.1016/j.jcat.2004.10.025
  • Zhou M, Le TN-M, Huynh LK, et al. Effects of structure and size of ni nanocatalysts on hydrogen selectivity via water–gas-shift reaction – a first-principles-based kinetic study. Catal Today. 2017;280:210–219.
  • Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy. 2016;29:439–456.10.1016/j.nanoen.2016.04.009
  • Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta. 1994;39:1833–1839.10.1016/0013-4686(94)85172-7
  • Peterson AA, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci. 2010;3:1311–1315.10.1039/c0ee00071j
  • Hansen HA, Montoya JH, Zhang YJ, et al. Electroreduction of methanediol on copper. Catal Lett. 2013;143:631–635.10.1007/s10562-013-1023-5
  • Nie XW, Esopi MR, Janik MJ, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed. 2013;52:2459–2462.10.1002/anie.v52.9
  • Nie XW, Luo WJ, Janik MJ, et al. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal. 2014;312:108–122.10.1016/j.jcat.2014.01.013
  • Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett. 2012;3:251–258.10.1021/jz201461p
  • Hirunsit P. Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: a DFT study. J Phys Chem C. 2013;117:8262–8268.10.1021/jp400937e
  • Hirunsit P, Soodsawang W, Limtrakul J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C. 2015;119:8238–8249.10.1021/acs.jpcc.5b01574
  • Shi C, Chan K, Yoo JS, et al. Barriers of electrochemical CO2 reduction on transition metals. Org Process Res Dev. 2016;20:1424–1430.10.1021/acs.oprd.6b00103
  • Cheng T, Xiao H, Goddard WA. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc. 2016;138:13802–13805.10.1021/jacs.6b08534
  • Hori Y, Murata A, Kikuchi K, et al. Electrochemical reduction of carbon-dioxide to carbon-monoxide at a gold electrode in aqueous potassium hydrogen carbonate. J Chem Soc Chem Commun. 1987;728–729.10.1039/c39870000728
  • Chen YH, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc. 2012;134:19969–19972.10.1021/ja309317u
  • Kauffman DR, Alfonso D, Matranga C, et al. Experimental and computational investigation of Au-25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J Am Chem Soc. 2012;134:10237–10243.10.1021/ja303259q
  • Mistry H, Reske R, Zeng ZH, et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc. 2014;136:16473–16476.10.1021/ja508879j
  • Zhu WL, Michalsky R, Metin Önder, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2013;135:16833–16836.10.1021/ja409445p
  • Zhu WL, Zhang YJ, Zhang HY, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc. 2014;136:16132–16135.10.1021/ja5095099
  • Greeley J, Nørskov JK. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J Phys Chem C. 2009;113:4932–4939.10.1021/jp808945y
  • Ma XF, Li Z, Achenie LEK, et al. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J Phys Chem Lett. 2015;6:3528–3533.10.1021/acs.jpclett.5b01660
  • Li Z, Ma XF, Xin HL. Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today. 2017;280:232–238.10.1016/j.cattod.2016.04.013
  • Schaul T, Bayer J, Wierstra D, et al. PyBrain. J Mach Learn Res. 2010;11:743–746.
  • Peterson AA. Acceleration of saddle-point searches with machine learning. J Chem Phys. 2016;145:074106.
  • Khorshidi A, Peterson AA. Amp: a modular approach to machine learning in atomistic simulations. Comput Phys Commun. 2016;207:310–324.10.1016/j.cpc.2016.05.010
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98:146401–146404.
  • Artrith N, Behler J. High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys Rev B. 2012;85:045439.
  • Artrith N, Urban A. An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput Mater Sci. 2016;114:135–150.10.1016/j.commatsci.2015.11.047
  • Vojvodic A, Nørskov JK. New design paradigm for heterogeneous catalysts. Nat Sci Rev. 2015;2:140–149.10.1093/nsr/nwv023
  • Hansen HA, Shi C, Lausche AC, et al. Bifunctional alloys for the electroreduction of CO2 and CO. Phys Chem Chem Phys. 2016;18:9194–9201.10.1039/C5CP07717F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.