108
Views
1
CrossRef citations to date
0
Altmetric
Energy Applications

The electronic structure of nanoscale interfaces

Pages 850-860 | Received 31 Dec 2016, Accepted 27 Mar 2017, Published online: 04 May 2017

References

  • Li Y, Zelakiewicz BS, Allison TC, et al. Measuring level alignment at the metal-molecule interface by in situ electrochemical 13c nmr. ChemPhysChem. 2015;16:747–751. doi:10.1002/cphc.201402889.
  • Gobbi M, Pietrobon L, Atxabal A, et al. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy. Nature Commun. 2014 Jun;5:4161. EP --; article. doi:10.1038/ncomms5161.
  • Kiguchi M, Fujii S. Governing the metal-molecule interface: towards new functionality in single-molecule junctions. Bull Chem Soc Jpn. 2017;90:1–11. doi:10.1246/bcsj.20160229.
  • Perrin ML, Verzijl CJO, Martin CA, et al. Large tunable image-charge effects in single-molecule junctions. Nat Nano. 2013 Apr;8:282–287. doi:10.1038/nnano.2013.26.
  • Koch N, Ueno N, A Wee. The molecule-metal interface. 1st ed. WILEY-VCH Verlag GmbH; 2013.
  • Kronik L, Neaton JB. Excited-state properties of molecular solids from first principles. Ann Rev Phys Chem. 2016;67:587–616. pMID: 27090844. doi:10.1146/annurev-physchem-040214-121351.
  • Raman KV, Kamerbeek AM, Mukherjee A, et al. Interface-engineered templates for molecular spin memory devices. Nature. 2013 Jan;493:509–513. doi:10.1038/nature11719.
  • Thompson D, Liao J, Nolan M, et al. Formation mechanism of metal-molecule-metal junctions: Molecule-assisted migration on metal defects. J Phys Chem C. 2015;119:19438–19451. doi:10.1021/acs.jpcc.5b04383.
  • Hung L, Baishya K, Öğüt S. First-principles real-space study of electronic and optical excitations in rutile tio2 nanocrystals. Phys Rev B. 2014 Oct;90:165424. doi:10.1103/PhysRevB.90.165424.
  • Faber C, Boulanger P, Attaccalite C, et al. Excited states properties of organic molecules: from density functional theory to the gw and bethe-salpeter green’s function formalisms. Philoso Trans R Soc London A: Math Phys Eng Sci. 2014;372:20130271.
  • Savoie BM, Jackson NE, Marks TJ, et al. Reassessing the use of one-electron energetics in the design and characterization of organic photovoltaics. Phys Chem Chem Phys. 2013;15:4538–4547.
  • Bredas JL, Linke H, Borgström M, et al. Molecular understanding of organic solar cells: the challenges. Vol. 1519, AIP Conference Proceedings. AIP; 2013. p. 55–58.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964 Nov;136:B864–B871. doi:10.1103/PhysRev.136.B864.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965 Nov;140:A1133–A1138. doi:10.1103/PhysRev.140.A1133.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996 Oct;77:3865–3868. doi:10.1103/PhysRevLett.77.3865.
  • Becke AD. Density functional thermochemistry. iii. the role of exact exchange. J Chem Phys. 1993;98:5648–5652. Available from: http://scitation.aip.org/content/aip/journal/jcp/98/7/10.1063/1.464913
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118:8207–8215. doi:10.1063/1.1564060.
  • Rignanese GM, Blase X, Louie SG. Quasiparticle effects on tunneling currents: a study of c2h4 adsorbed on the si(001)- (2 x 1) surface. Phys Rev Lett. 2001 Mar;86:2110–2113.
  • Neaton JB, Hybertsen MS, Louie SG. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett. 2006 Nov;97:216405.
  • Quek SY, Venkataraman L, Choi HJ, et al. Aminegold linked single-molecule circuits: experiment and theory. Nano Lett. 2007;7:3477–3482.
  • Hedin L. New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev. 1965 Aug;139:A796–A823. doi:10.1103/PhysRev.139.A796.
  • Hybertsen MS, Louie SG. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys Rev B. 1986 Oct;34:5390–5413.
  • Godby RW, Schlüter M, Sham LJ. Self-energy operators and exchange-correlation potentials in semiconductors. Phys Rev B. 1988 Jun;37:10159–10175. doi:10.1103/PhysRevB.37.10159.
  • Seidl A, Görling A, Vogl P, et al. Generalized kohn-sham schemes and the band-gap problem. Phys Rev B. 1996 Feb;53:3764–3774. doi:10.1103/PhysRevB.53.3764.
  • Stein T, Eisenberg H, Kronik L, et al. Fundamental gaps in finite systems from eigenvalues of a generalized kohn-sham method. Phys Rev Lett. 2010 Dec;105:266802. doi:10.1103/PhysRevLett.105.266802.
  • Borghi G, Park CH, Nguyen NL, et al. Variational minimization of orbital-density-dependent functionals. Phys Rev B. 2015 Apr;91:155112. doi:10.1103/PhysRevB.91.155112.
  • Chong DP, Gritsenko OV, Baerends EJ. Interpretation of the kohn-sham orbital energies as approximate vertical ionization potentials. J Chem Phys. 2002;116:1760–1772. doi:10.1063/1.1430255.
  • Quek S, Choi HJ, Louie SG, et al. Length dependence of conductance in aromatic single-molecule junctions. Nano Letters. 2009;9:3949–3953.
  • Dell-Angela M, Kladnik G, Cossaro A, et al. Relating energy level alignment and amine-linked single molecule junction conductance. Nano Letters. 2010;10:2470–2474. pMID: 20578690. doi:10.1021/nl100817h.
  • Biller A, Tamblyn I, Neaton JB, et al. Electronic level alignment at a metal-molecule interface from a short-range hybrid functional. J Chem Phys. 2011;135:164706. Available from: http://scitation.aip.org/content/aip/journal/jcp/135/16/10.1063/1.3655357
  • Stokbro K, Taylor J, Brandbyge M, et al. Theoretical study of the nonlinear conductance of di-thiol benzene coupled to au(1 1 1) surfaces via thiol and thiolate bonds. Computational Materials Science. 2003;27:151–160. e-MRS Symposium Spring Meeting -- Symposium A: Atomic Scale Materials Design; Available from: http://www.sciencedirect.com/science/article/pii/S0927025602004391
  • Janak JF. Proof that in density-functional theory. Phys Rev B. 1978 Dec;18:7165–7168. doi:10.1103/PhysRevB.18.7165.
  • Tamblyn I, Darancet P, Quek SY, et al. Electronic energy level alignment at metal-molecule interfaces with a gw approach. Phys Rev B. 2011 Nov;84:201402. doi:10.1103/PhysRevB.84.201402.
  • Gao W, Xia W, Gao X, et al. Speeding up gw calculations to meet the challenge of large scale quasiparticle predictions. Nat : Sci Rep. 2016;6:36849.
  • Haxton TK, Zhou H, Tamblyn I, et al. Competing thermodynamic and dynamic factors select molecular assemblies on a gold surface. Phys Rev Lett. 2013 Dec;111:265701. doi:10.1103/PhysRevLett.111.265701.
  • Li G, Tamblyn I, Cooper VR, et al. Molecular adsorption on metal surfaces with van der waals density functionals. Phys Rev B. 2012 Mar;85:121409. doi:10.1103/PhysRevB.85.121409.
  • Yu M, Doak P, Tamblyn I, et al. Theory of covalent adsorbate frontier orbital energies on functionalized light-absorbing semiconductor surfaces. J Phys Chem Lett. 2013;4:1701–1706.
  • Tamblyn I, Refaely-Abramson S, Neaton JB, et al. Simultaneous determination of structures, vibrations, and frontier orbital energies from a self-consistent range-separated hybrid functional. J Phys Chem Lett. 2014;5:2734–2741. doi:10.1021/jz5010939.
  • Egger DA, Liu ZF, Neaton JB, et al. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory. Nano Lett. 2015;15:2448–2455. pMID: 25741626. doi:10.1021/nl504863r.
  • van Setten MJ, Caruso F, Sharifzadeh S, et al. Gw100: benchmarking g0w0 for molecular systems. J Chem Theory Comput. 2015;11:5665–5687. pMID: 26642984. doi:10.1021/acs.jctc.5b00453.
  • Duhm S, Gerlach A, Salzmann I, et al. {PTCDA} on au(1 1 1), ag(1 1 1) and cu(1 1 1): correlation of interface charge transfer to bonding distance. Organic Electron. 2008;9:111–118. Available from: http://www.sciencedirect.com/science/article/pii/S1566119907001437
  • Romaner L, Nabok D, Puschnig P, et al. Theoretical study of ptcda adsorbed on the coinage metal surfaces, ag(111), au(111) and cu(111). J Phys. 2009;11:053010. Available from: http://stacks.iop.org/1367-2630/11/i=5/a=053010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.