436
Views
2
CrossRef citations to date
0
Altmetric
Articles

Ab initio molecular metadynamics simulation for S-nitrosylation by nitric oxide: S-nitroxide as the key intermediate

, , , , , & ORCID Icon show all
Pages 1134-1141 | Received 25 Jan 2017, Accepted 05 Apr 2017, Published online: 19 May 2017

References

  • Hess DT, Matsumoto A, Kim SO, et al. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6:150–166.10.1038/nrm1569
  • Shi T, Chen LM, Chen XP, et al. Molecular mechanism of protein S-nitrosylation and its correlation with human diseases. Prog Chem. 2015;27(5):594–600.
  • McMahon TJ, Ahearn GS, Moya MP, et al. A nitric oxide processing defect of red blood cells created by hypoxia: Deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Nat Acad Sci. 2005;102(41):14801–14806.10.1073/pnas.0506957102
  • Padrón J, Peiró C, Cercas E, et al. Enhancement of S-nitrosylation in glycosylated hemoglobin. Biochem Biophys Res Commun. 2000;271(1):217–221.10.1006/bbrc.2000.2617
  • Taylor-Robinson AW, Looker M. Sensitivity of malaria parasites to nitric oxide at low oxygen tensions. Lancet. 1998;351(9116):1630–1630.10.1016/S0140-6736(05)77685-6
  • Zhao YL, Bartberger MD, Goto K, et al. Theoretical evidence for enhanced NO dimerization in aromatic hosts: implications for the role of the electrophile (NO)2 in nitric oxide chemistry. J Am Chem Soc. 2005;127(22):7964–7965.10.1021/ja042247s
  • Zhao YL, McCarren PR, Houk KN, et al. Nitrosonium-catalyzed decomposition of S-nitrosothiols in solution: a theoretical and experimental study. J Am Chem Soc. 2005;127(31):10917–10924.10.1021/ja050018f
  • Liang J, Cheng S, Hou J, et al. Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water – a theoretical study of S-nitrosylation. Sci Chin Chem. 2012;55(10):2081–2088.10.1007/s11426-012-4712-9
  • Cheng S, Shi T, Wang XL, et al. Features of S-nitrosylation based on statistical analysis and molecular dynamics simulation: cysteine acidity, surrounding basicity, steric hindrance and local flexibility. Mol Biosyst. 2014;10:2597–2606.10.1039/C4MB00322E
  • Foster MW, McMahon TJ, Stamler JS. S-nitrosylation in health and disease. Trends Mol Med. 2003;9(4):160–168.10.1016/S1471-4914(03)00028-5
  • Gow AJ, Buerk DG, Ischiropoulos H. A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem. 1997;272(5):2841–2845.10.1074/jbc.272.5.2841
  • Zhao Y-L, Houk KN. Thionitroxides, RSNHO•: the structure of the SNO moiety in ‘S-nitrosohemoglobin’, a possible NO reservoir and transporter. J Am Chem Soc. 2006;128(5):1422–1423.10.1021/ja057097f
  • Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985;55(22):2471.10.1103/PhysRevLett.55.2471
  • Laio A, Parrinello M. Escaping free-energy minima. Proc Nat Acad Sci. 2002;99(20):12562–12566.10.1073/pnas.202427399
  • Ensing B, De Vivo M, Liu Z, et al. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res. 2006;39(2):73–81.10.1021/ar040198i
  • Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008;71:126601.10.1088/0034-4885/71/12/126601
  • Ensing B, Laio A, Parrinello M, et al. A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. J Phys Chem B. 2005;109(14):6676–6687.10.1021/jp045571i
  • Ensing B, Klein ML. Perspective on the reactions between F– and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels. Proc Nat Acad Sci. 2005;102(19):6755–6759.10.1073/pnas.0408094102
  • Gunaydin H, Houk KN. Molecular dynamics simulation of the HOONO decomposition and the HO•/NO2• caged radical pair in water. J Am Chem Soc. 2008;130(31):10036–10037.10.1021/ja711365e
  • Tuckerman M, Laasonen K, Sprik M, et al. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J Chem Phys. 1995;103(1):150–161.10.1063/1.469654
  • Izvekov S, Voth GA. Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited. J Chem Phys. 2005;123(4):044505–44509.10.1063/1.1961443
  • Morrone JA, Tuckerman M. Ab initio molecular dynamics study of proton mobility in liquid methanol. J Chem Phys. 2002;117(9):4403–4413.10.1063/1.1496457
  • CPMD, Copyright IBM Corp 1990–2008, Copyright MPI für Festkörperforschung Stuttgart 1997–2001. Available from: http://www.cpmd.org/.
  • Grossman JC. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J Chem Phys. 2004;120(1):300–311.10.1063/1.1630560
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–3100.10.1103/PhysRevA.38.3098
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785–789.10.1103/PhysRevB.37.785
  • Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43(3):1993–2006.10.1103/PhysRevB.43.1993
  • Jia L, Bonaventura C, Bonaventura J, et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380(6571):221–226.10.1038/380221a0
  • Lee TY, Chen YJ, Lu TC, et al. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity. PLoS ONE. 2011;6(7):e21849.10.1371/journal.pone.0021849
  • Stamler JS, Toone EJ, Lipton SA, et al. (S)NO signals: translocation, regulation, and a consensus motif. Neuron. 1997;18(5):691–696.10.1016/S0896-6273(00)80310-4
  • Hess DT, Matsumoto A, Nudelman R, et al. S-nitrosylation: spectrum and specificity. Nat Cell Biol. 2001;3(2):E46–E49.10.1038/35055152
  • Greco TM, Hodara R, Parastatidis I, et al. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Nat Acad Sci. 2006;103(19):7420–7425.10.1073/pnas.0600729103
  • Liu M, Hou J, Huang L, et al. Site-specific proteomics approach for study protein S-nitrosylation. Anal Chem. 2010;82(17):7160–7168.10.1021/ac100569d
  • Marino SM, Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol. 2010;395(4):844–859.10.1016/j.jmb.2009.10.042
  • Doulias PT, Greene JL, Greco TM, et al. Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Nat Acad Sci. 2010;107(39):16958–16963.10.1073/pnas.1008036107
  • Nair, NN, Vreco_CPMD.f90 code version 10.3. Available from: http://www.cpmd.org
  • Taylor R, Kennard O. Crystallographic evidence for the existence of C–H···O, C–H···N and C–H···Cl hydrogen bonds. J Am Chem Soc. 1982;104(19):5063–5070.10.1021/ja00383a012
  • Domagała M, Grabowski SJ. C–H···N and C–H···S hydrogen bonds – influence of hybridization on their strength. J Phys Chem A. 2005;109(25):5683–5688.10.1021/jp0511496
  • Baciu C, Gauld JW. An assessment of theoretical methods for the calculation of accurate structures and S–N bond dissociation energies of S-nitrosothiols (RSNOs). J Phys Chem A. 2003;107(46):9946–9952.10.1021/jp035205j
  • Bartberger MD, Mannion JD, Powell SC, et al. S−N dissociation energies of S-nitrosothiols: on the origins of nitrosothiol decomposition rates. J Am Chem Soc. 2001;123(36):8868–8869.10.1021/ja0109390
  • Lü JM, Wittbrodt JM, Wang K. et al., NO affinities of S-nitrosothiols: a direct experimental and computational investigation of RS−NO bond dissociation energies. J Am Chem Soc. 2001; 123(12): 2903–2904.
  • Grossi L, Montevecchi PC. A kinetic study of S-nitrosothiol decomposition. Chem Eur J. 2002;8(2):380–387.10.1002/(ISSN)1521-3765
  • Yi J, Khan MA, Lee J, et al. The solid-state molecular structure of the S-nitroso derivative of L-cysteine ethyl ester hydrochloride. Nitric Oxide. 2005;12(4):261–266.10.1016/j.niox.2005.03.005
  • Timerghazin QK, Peslherbe GH, English AM. Structure and stability of HSNO, the simplest S-nitrosothiol. Phys Chem Chem Phys. 2008;10(11):1532–1539.10.1039/b715025c
  • Fu Y, Mou Y, Lin BL, et al. Structures of the X−Y−NO molecules and homolytic dissociation energies of the Y−NO bonds (Y = C, N, O, S). J Phys Chem A. 2002;106(51):12386–12392.10.1021/jp0217029
  • Toubin C, Yeung DYH, English AM, et al. Theoretical evidence that CuI complexation promotes degradation of S-nitrosothiols. J Am Chem Soc. 2002;124(50):14816–14817.10.1021/ja027386t
  • Miranda KM. The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev. 2005;249(3–4):433–455.10.1016/j.ccr.2004.08.010
  • Fukuto JM, Switzer CH, Miranda KM, et al. Nitroxyl (HNO): chemistry, biochemistry, and pharmacology. Annu Rev Pharmacol Toxicol. 2005;45:335–355.10.1146/annurev.pharmtox.45.120403.095959
  • Fukuto JM, Bartberger MD, Dutton AS, et al. The physiological chemistry and biological activity of nitroxyl (HNO): the neglected, misunderstood, and enigmatic nitrogen oxide. Chem Res Toxicol. 2005;18(5):790–801.10.1021/tx0496800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.