109
Views
0
CrossRef citations to date
0
Altmetric
Articles

Self-aggregation of trehalose in the mixed solvents of 1,3-dimethylimidazolium ionic liquid and water

, &
Pages 1160-1171 | Received 29 Jan 2017, Accepted 13 Apr 2017, Published online: 31 May 2017

References

  • Brennecke JF, Rogers RD, Seddon KR. Ionic liquids IV: Not just solvents anymore. Washington (DC): American Chemical Society; 2007.10.1021/symposium
  • Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–2084.10.1021/cr980032t
  • Van RF, Madeira LR, Sheldon RA. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 2003;21:131–138.
  • Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A. 2010;373:1–56.10.1016/j.apcata.2009.10.008
  • Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev. 2011;111:3508–3576.10.1021/cr1003248
  • Dong K, Zhang S, Wang J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun. 2016;52:6744–6764.10.1039/C5CC10120D
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–3393.10.1002/(ISSN)1521-3773
  • Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids. Cellulose. 2008;15:59–66.10.1007/s10570-007-9160-x
  • Pinkert A, Marsh KN, Pang S, et al. Ionic liquids and their interaction with cellulose. Chem Rev. 2009;109:6712–6728.10.1021/cr9001947
  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–3994.10.1039/c0cs00108b
  • Wang H, Gurau G, Rogers RD. Ionic liquid processing of cellulose. Chem Soc Rev. 2012;41:1519–1537.10.1039/c2cs15311d
  • Medronho B, Lindman B. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Coll Interface Sci. 2015;222:502–508.10.1016/j.cis.2014.05.004
  • Peleteiro S, Rivas S, Alonso JL, et al. Furfural production using ionic liquids: a review. Biores Technol. 2016;202:181–191.10.1016/j.biortech.2015.12.017
  • Lima S, Neves P, Antunes MM, et al. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A. 2009;363:93–99.10.1016/j.apcata.2009.04.049
  • Zhao H, Holladay JE, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-Hydroxymethylfurfural. Science. 2007;316:1597–1600.10.1126/science.1141199
  • Chidambaram M, Bell AT. A two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids. Green Chem. 2010;12:1253–1262.10.1039/c004343e
  • Qi X, Watanabe M, Aida TM, et al. Fast transformation of glucose and Di-/polysaccharides into 5-Hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. Chemsuschem. 2010;3:1071–1077.10.1002/cssc.v3:9
  • Dee SJ, Bell AT. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins. Chemsuschem. 2011;4:1166–1173.10.1002/cssc.201000426
  • Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, et al. Metal-free dehydration of glucose to 5-(Hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem Eur J. 2011;17:1456–1464.10.1002/chem.v17.5
  • Heguaburu V, Franco J, Reina L, et al. Dehydration of carbohydrates to 2-furaldehydes in ionic liquids by catalysis with ion exchange resins. Catal Commun. 2012;27:88–91.10.1016/j.catcom.2012.07.002
  • Qu Y, Li L, Wei Q, et al. One-pot conversion of disaccharide into 5-Hydroxymethylfurfural catalyzed by imidazole ionic liquid. Sci Rep. 2016;6:26067.10.1038/srep26067
  • Cammarata L, Kazarian SG, Salter PA, et al. Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys. 2001;3:5192–5200.10.1039/b106900d
  • Mele A, Tran CD, Sh DPL. The structure of a room-temperature ionic liquid with and without trace amounts of water: the role of C–H O and C–H F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew Chem Int Ed. 2003;42:4364–4366.10.1002/anie.v42:36
  • Tran CD, Sh DPL, Oliveira D. Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water. Appl Spectrosc. 2003;57:152–157.10.1366/000370203321535051
  • Köddermann T, Wertz C, Heintz A, et al. The association of water in ionic liquids: a reliable measure of polarity. Angew Chem Int Ed. 2006;45:3697–3702.10.1002/(ISSN)1521-3773
  • Migliorati V, Ballirano P, Gontrani L, et al. Thermal and structural properties of ethylammonium chloride and its mixture with water. J Phys Chem B. 2011;115:4887–4899.10.1021/jp2010138
  • Dominguez-Vidal A, Kaun N, Ayora-Cañada MJ, et al. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy. J Phys Chem B. 2007;111:4446–4452.10.1021/jp068777n
  • Paul A, Ribeiro AP, Karmakar A, et al. A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Trans. 2016;45:12779–12789.10.1039/C6DT01852A
  • Kramer PL, Giammanco CH, Fayer MD. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid. J Chem Phys. 2015;142:212408.10.1063/1.4914156
  • Reid JE, Gammons RJ, Slattery JM, et al. Interactions in water–ionic liquid mixtures: comparing protic and aprotic systems. J Phys Chem B. 2017;121:599–609.10.1021/acs.jpcb.6b10562
  • Hanke CG, Atamas NA, Lynden-Bell RM. Solvation of small molecules in imidazolium ionic liquids: a simulation study. Green Chem. 2002;4:107–111.10.1039/b109179b
  • Hanke CG, Lynden-Bell RM. A simulation study of water−dialkylimidazolium ionic liquid mixtures. J Phys Chem B. 2003;107:10873–10878.10.1021/jp034221d
  • Jiang W, Wang Y, Voth GA. Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J Phys Chem B. 2007;111:4812–4818.10.1021/jp067142l
  • Spickermann C, Thar J, Lehmann SBC, et al. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture. J Chem Phys. 2008;129:104505.10.1063/1.2974098
  • Bernardes CE, Me MDP, Canongia Lopes JN. The structure of aqueous solutions of a hydrophilic ionic liquid: the full concentration range of 1-ethyl-3-methylimidazolium ethylsulfate and water. J Phys Chem B. 2011;115:2067–2074.10.1021/jp1113202
  • Niazi AA, Rabideau BD, Ismail AE. Effects of water concentration on the structural and diffusion properties of imidazolium-based ionic liquid–water mixtures. J Phys Chem B. 2013;117:1378–1388.10.1021/jp3080496
  • Khan I, Taha M, Ribeiroclaro P, et al. Effect of the cation on the interactions between alkyl methyl imidazolium chloride ionic liquids and water. J Phys Chem B. 2014;118:10503–10514.10.1021/jp5057495
  • D’Angelo P, Serva A, Aquilanti G, et al. Structural properties and aggregation behaviour of 1-hexyl-3-methylimidazolium iodide in aqueous solutions. J Phys Chem B. 2015;119:14515–14526.10.1021/acs.jpcb.5b08739
  • Binder JB, Raines RT. Fermentable sugars by chemical hydrolysis of biomass. Proc Nat Acad Sci. 2010;107:4516–4521.10.1073/pnas.0912073107
  • Liu H, Sale KL, Simmons BA, et al. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B. 2011;115:10251–10258.10.1021/jp111738q
  • Sciarini LS, Rolland-Sabaté A, Guilois S, et al. Understanding the destructuration of starch in water-ionic liquid mixtures. Green Chem. 2015;17:291–299.10.1039/C4GC01248H
  • Zhang B, Chen L, Xie F, et al. Understanding the structural disorganization of starch in water-ionic liquid solutions. Phys Chem Chem Phys. 2015;17:13860–13871.10.1039/C5CP01176K
  • Kimura H, Yoshida K, Uosaki Y, et al. Effect of water content on conversion of d-cellobiose into 5-Hydroxymethyl-2-furaldehyde in a dimethyl sulfoxide–water mixture. J Phys Chem A. 2013;117:10987–10996.10.1021/jp407801u
  • Kan Z, Yan X, Ma J. Conformation dynamics and polarization effect of α,α-Trehalose in a vacuum and in aqueous and salt solutions. J Phys Chem A. 2015;119:1573–1589.10.1021/jp507692h
  • Case DA, Darden TA, Cheatham TE, et al. AMBER 9. San Francisco (CA): University of California; 2006.
  • Canongia Lopes JN, Deschamps J, Pádua AAH. Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B. 2004;108:2038–2047.10.1021/jp0362133
  • Smith DE, Dang LX. Computer simulations of NaCl association in polarizable water. J Chem Phys. 1994;100:3757–3766.10.1063/1.466363
  • Wu X, Brooks BR. Self-guided Langevin dynamics simulation method. Chem Phys Lett. 2003;381:512–518.10.1016/j.cplett.2003.10.013
  • Darden T, York D, Pedersen L. Particle mesh Ewald – an Nlog(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092.10.1063/1.464397
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.10.1063/1.470117
  • Crowley MF, Darden TA, Cheatham TE III, et al. Adventures in improving the scaling and accuracy of a parallel molecular dynamics program. J Supercomput. 1997;11:255–278.10.1023/A:1007907925007
  • Wang JM, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–1174.10.1002/(ISSN)1096-987X
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision D.01. Wallingford (CT): Gaussian, Inc.; 2004.
  • Bakker H. Structural dynamics of aqueous salt solutions. Chem Rev. 2008;108:1456–1473.10.1021/cr0206622
  • Heuft J, Meijer E. Density functional theory based molecular dynamics study of aqueous chloride solvation. J Chem Phys. 2003;119:11788–11791.10.1063/1.1624362
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105:9954–9960.10.1021/jp003020w
  • Ault BS, Pimentel GC. Infrared spectrum of the water-hydrochloric acid complex in solid nitrogen. J Phys Chem. 1973;77:57–61.10.1021/j100620a012
  • Cremer D, Pople JA. General definition of ring puckering coordinates. J Am Chem Soc. 1975;97:1354–1358.10.1021/ja00839a011
  • Ha S, Madsen L, Brady J. Conformational analysis and molecular dynamics simulations of maltose. Biopolymers. 1988;27:1927–1952.10.1002/(ISSN)1097-0282

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.