153
Views
4
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation of the nanofibrils formed by amyloid-based peptide amphiphiles

, , &
Pages 1227-1239 | Received 03 Feb 2017, Accepted 14 Apr 2017, Published online: 01 Jun 2017

References

  • Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–817.10.1126/science.1205962
  • Trent A, Marullo R, Lin B, et al. Structural properties of soluble peptide amphiphile micelles. Soft Matter. 2011;7(20):9572–9582.10.1039/c1sm05862b
  • Paramonov SE, Jun H-W, Hartgerink JD. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc. 2006;128(22):7291–7298.10.1021/ja060573x
  • Velichko YS, Stupp SI, de la Cruz MO. Molecular simulation study of peptide amphiphile self-assembly. J Phys Chem B. 2008;112:2326–2334.
  • Behanna HA, Donners JJJM, Gordon AC, et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc. 2005;127(4):1193–1200.10.1021/ja044863u
  • Walter MN, Dehsorkhi A, Hamley IW, et al. Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity. Biomater Sci. 2016;4(2):346–354.10.1039/C5BM00428D
  • Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci. 2002;99(8):5133–5138.10.1073/pnas.072699999
  • Tysseling VM, Sahni V, Pashuck ET, et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res. 2010;88(14):3161–3170.10.1002/jnr.22472
  • Choi H, Jeena MT, Palanikumar L, et al. The HA-incorporated nanostructure of a peptide-drug amphiphile for targeted anticancer drug delivery. Chem Commun. 2016;52(32):5637–5640.10.1039/C6CC00200E
  • Lin Y-A, Cheetham AG, Zhang P, et al. Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. ACS Nano. 2014;8(12):12690–12700.10.1021/nn505688b
  • Matson JB, Newcomb CJ, Bitton R, et al. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter. 2012;8(13):3586–3595.10.1039/c2sm07420f
  • Hung AM, Stupp SI. Simultaneous self-assembly, orientation, and patterning of peptide amphiphile nanofibers by soft lithography. Nano Lett. 2007;7:1165–1171.
  • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001;294(5547):1684–1688.10.1126/science.1063187
  • Pashuck ET, Cui H, Stupp SI. Tuning supramolecular rigidity of peptide fibers through molecular structure. J Am Chem Soc. 2010;132:6041–6046.10.1021/ja908560n
  • Fry HC, Garcia JM, Medina MJ, et al. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays. J Am Chem Soc. 2012;134(36):14646–14649.10.1021/ja304674d
  • Korevaar PA, Newcomb CJ, Meijer EW, et al. Pathway selection in peptide amphiphile assembly. J Am Chem Soc. 2014;136(24):8540–8543.10.1021/ja503882s
  • van den Heuvel M, Baptist H, Venema P, et al. Mechanical and thermal stabilities of peptide amphiphile fibres. Soft Matter. 2011;7(20):9737.10.1039/c1sm05642e
  • Toksoz S, Mammadov R, Tekinay AB, et al. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. J Colloid Interface Sci. 2011;356(1):131–137.10.1016/j.jcis.2010.12.076
  • Ghosh A, Haverick M, Stump K, et al. Fine-tuning the pH trigger of self-assembly. J Am Chem Soc. 2012;134:3647–3650.10.1021/ja211113n
  • Jones RR, Castelletto V, Connon CJ, et al. Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol Pharm. 2013;10(3):1063–1069.10.1021/mp300549d
  • Chen Y, Gan HX, Tong YW. pH-Controlled hierarchical self-assembly of peptide amphiphile. Macromolecules. 2015;48(8):2647–2653.10.1021/ma502572w
  • Zhang J, Hao R, Huang L, et al. Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chem Commun. 2011;47(37):10296–10298.10.1039/c1cc12633d
  • Guo H, Zhang J, Xu T, et al. The robust hydrogel hierarchically assembled from a pH sensitive peptide amphiphile based on silk fibroin. Biomacromol. 2013;14(8):2733–2738.
  • Dai B, Kang SG, Huynh T, et al. Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface. Proc Natl Acad Sci. 2013;110(21):8543–8548.
  • Deng M, Yu D, Hou Y, et al. Self-assembly of peptide-amphiphile C12-A (11-17) into nanofibrils. J Phys Chem B. 2009;113:8539–8544.10.1021/jp904289y
  • Yu D, Deng M, He C, et al. Fluorescent nanofibrils constructed by self-assembly of a peptide amphiphile with an anionic dye. Soft Matter. 2011;7(22):10773.10.1039/c1sm06222k
  • He C, Han Y, Fan Y, et al. Self-assembly of aβ-based peptide amphiphiles with double hydrophobic chains. Langmuir. 2012;28(7):3391–3396.10.1021/la2046146
  • Kang S-G, Li H, Huynh T, et al. Molecular mechanism of surface-assisted epitaxial self-assembly of amyloid-like peptides. ACS Nano. 2012;6(10):9276–9282.10.1021/nn303740j
  • Mazza M, Notman R, Anwar J, et al. Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano. 2013;7(2):1016–1026.10.1021/nn305193d
  • Schwierz N, Frost CV, Geissler PL, et al. Dynamics of seeded Aβ40-fibril growth from atomistic molecular dynamics simulations: kinetic trapping and reduced water mobility in the locking step. J Am Chem Soc. 2016;138(2):527–539.10.1021/jacs.5b08717
  • Kang S-G, Huynh T, Xia Z, et al. Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides. J Am Chem Soc. 2013;135:3150–3157.10.1021/ja310989u
  • Zhou X, Xi W, Luo Y, et al. Interactions of a water-soluble fullerene derivative with amyloid-β protofibrils: dynamics, binding mechanism, and the resulting salt-bridge disruption. J Phys Chem B. 2014;118:6733–6741.10.1021/jp503458w
  • Paparcone R, Keten S, Buehler MJ. Atomistic simulation of nanomechanical properties of Alzheimer's Aβ(1–40) amyloid fibrils under compressive and tensile loading. J Biomech. 2010;43:1196–1201.10.1016/j.jbiomech.2009.11.026
  • Balbach JJ, Ishii Y, Antzutkin ON, et al. Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry. 2000;39:13748–13759.10.1021/bi0011330
  • Xie L, Luo Y, Wei G. Aβ(16–22) peptides can assemble into ordered β-barrels and bilayer β-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates. J Phys Chem B. 2013;117(35):10149–10160.10.1021/jp405869a
  • Li H, Luo Y, Derreumaux P, et al. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer's amyloid-β(16-22) peptide. Biophys J. 2011;101(9):2267–2276.10.1016/j.bpj.2011.09.046
  • Chang Z, Luo Y, Zhang Y, et al. Interactions of Aβ25-35 β-barrel-like oligomers with anionic lipid bilayer and resulting membrane leakage: an all-atom molecular dynamics study. J Phys Chem B. 2011;115:1165–1174.10.1021/jp107558e
  • Yang YI, Gao YQ. Computer simulation studies of Aβ37-42 aggregation thermodynamics and kinetics in water and salt solution. J Phys Chem B. 2015;119(3):662–670.10.1021/jp502169b
  • Lee OS, Stupp SI, Schatz GC. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J Am Chem Soc. 2011;133(10):3677–3683.10.1021/ja110966y
  • Lee O-S, Liu Y, Schatz GC. Molecular dynamics simulation of β-sheet formation in self-assembled peptide amphiphile fibers. J Nanoparticle Res. 2012;14(8):936.
  • Yu T, Lee OS, Schatz GC. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers. J Phys Chem A. 2013;117(32):7453–7460.10.1021/jp401508w
  • Tekin ED. Molecular dynamics simulations of self-assembled peptide amphiphile based cylindrical nanofibers. RSC Adv. 2015;5(82):66582–66590.10.1039/C5RA10685K
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126(1):014101.10.1063/1.2408420
  • Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52(2):255–268.10.1080/00268978400101201
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695–1697.10.1103/PhysRevA.31.1695
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103(19):8577–8593.10.1063/1.470117
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472.10.1002/(ISSN)1096-987X
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4(3):435–447.10.1021/ct700301q
  • Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2012;8(9):3257–3273.10.1021/ct300400x
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102(18):3586–3616.10.1021/jp973084f
  • Bjelkmar P, Larsson P, Cuendet MA, et al. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput. 2010;6(2):459–466.10.1021/ct900549r
  • Aggeli A, Nyrkova IA, Bell M, et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci. 2001;98(21):11857–11862.10.1073/pnas.191250198

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.