579
Views
35
CrossRef citations to date
0
Altmetric
Articles

Molecular insight into the micro-behaviors of CH4 and CO2 in montmorillonite slit-nanopores

, , , , &
Pages 1004-1011 | Received 05 Dec 2016, Accepted 28 Apr 2017, Published online: 06 Jun 2017

References

  • Kerr RA. Natural gas from shale bursts onto the scene. Science. 2010;328:1624–1626.10.1126/science.328.5986.1624
  • Kargbo DM, Wilhelm RG, Campbell DJ. Natural gas plays in the marcellus shale: challenges and potential opportunities. Environ Sci Technol. 2010;44:5679–5684.10.1021/es903811p
  • Xin-gang Z, Ya-hui Y. The current situation of shale gas in Sichuan. Renew Sustain Energy Rev. 2015;50:653–664.10.1016/j.rser.2015.05.023
  • Wang Q, Chen X, Jha AN, et al. Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States. Renew Sustain Energy Rev. 2014;30:1–28.10.1016/j.rser.2013.08.065
  • Middleton RS, Carey JW, Currier RP, et al. Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2. Appl Energy. 2015;147:500–509.10.1016/j.apenergy.2015.03.023
  • Vidic RD, Brantley SL, Vandenbossche JM, et al. Impact of shale gas development on regional water quality. Science. 2013;340:1235009.10.1126/science.1235009
  • Llewellyn GT, Dorman F, Westland JL, et al. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proc Nat Acad Sci. 2015;112:6325–6330.10.1073/pnas.1420279112
  • Vengosh A, Jackson RB, Warner N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol. 2014;48:8334–8348.10.1021/es405118y
  • Cuéllar-Franca RM, Azapagic A Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization. 2015;9:82–102.10.1016/j.jcou.2014.12.001
  • Sun H, Yao J, Gao S-h, et al. Numerical study of CO2 enhanced natural gas recovery and sequestration in shale gas reservoirs. Int J Greenh Gas Con. 2013;19:406–419.
  • Li X, Elsworth D. Geomechanics of CO2 enhanced shale gas recovery. Journal of Natural Gas Science and Engineering. 2015;26:1607–1619.10.1016/j.jngse.2014.08.010
  • Niezgoda T, Miedzińska D, Małek E, et al. Study on carbon dioxide thermodynamic behavior for the purpose of shale rock fracturing. B Pol Acad Sci-Tech. 2013;61:605–612.
  • Chareonsuppanimit P, Mohammad SA, Robinson RL, et al. High-pressure adsorption of gases on shales: measurements and modeling. Int J Coal Geol. 2012;95:34–46.10.1016/j.coal.2012.02.005
  • Bai B, Elgmati M, Zhang H, et al. Rock characterization of Fayetteville shale gas plays. Fuel. 2013;105:645–652.10.1016/j.fuel.2012.09.043
  • Liang C, Jiang Z, Zhang C, et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China. J Nat Gas Sci Eng. 2014;21:636–648.10.1016/j.jngse.2014.09.034
  • Cao T, Song Z, Wang S, et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin. Mar Pet Geol. 2015;61:140–150.10.1016/j.marpetgeo.2014.12.007
  • Yingjie L, Xiaoyuan L, Yuelong W, et al. Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin. Mar Pet Geol. 2015;62:44–57.10.1016/j.marpetgeo.2015.01.011
  • Ji L, Zhang T, Milliken KL, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl Geochem. 2012;27:2533–2545.10.1016/j.apgeochem.2012.08.027
  • Shi J, Durucan S. A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel. 2003;82:1219–1229.10.1016/S0016-2361(03)00010-3
  • Harpalani S, Prusty BK, Dutta P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration. Energy Fuels. 2006;20:1591–1599.10.1021/ef050434l
  • Ozdemir E. Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. Int J Coal Geol. 2009;77:145–152.10.1016/j.coal.2008.09.003
  • Brochard L, Vandamme M, Pellenq RJ, et al. Adsorption-induced deformation of microporous materials: coal swelling induced by CO2–CH4 competitive adsorption. Langmuir. 2012;28:2659–2670.10.1021/la204072d
  • Wang H, Ran Q, Liao X, et al. Study of the CO2 ECBM and sequestration in coalbed methane reservoirs with SRV. J Nat Gas Sci Eng. 2016;33:678–686.10.1016/j.jngse.2016.06.007
  • Kowalczyk P, Gauden PA, Terzyk AP, et al. Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores. J Phys Chem C. 2012;116:13640–13649.10.1021/jp302776z
  • Jiang J, Babarao R, Hu Z. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals. Chem Soc Rev. 2011;40:3599–3612.10.1039/c0cs00128g
  • Babarao R, Dai S, Jiang D-e Effect of pore topology and accessibility on gas adsorption capacity in zeolitic − imidazolate frameworks: bringing molecular simulation close to experiment. J Phys Chem C. 2011;115:8126–8135.10.1021/jp1117294
  • Düren T, Bae YS, Snurr RQ. Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev. 2009;38:1237–1247.10.1039/b803498m
  • Liu L, Nicholson D, Bhatia SK. Interfacial resistance and length-dependent transport diffusivities in carbon nanotubes. J Phys Chem C. 2016;120:26363–26373.10.1021/acs.jpcc.6b09136
  • Wu H, Chen J, Liu H. Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. J Phys Chem C. 2015;119:13652–13657.10.1021/acs.jpcc.5b02436
  • Zhu X, Zhao Y-P. Atomic mechanisms and equation of state of methane adsorption in carbon nanopores. J Phys Chem C. 2014;118:17737–17744.10.1021/jp5047003
  • Yuan Q, Zhu X, Lin K, et al. Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide. Phys Chem Chem Phys. 2015;17:31887–31893.10.1039/C5CP06649B
  • Lee T, Bocquet L, Coasne B. Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media. Nat Commun. 2016;7:11890.10.1038/ncomms11890
  • Phan A, Cole DR, Striolo A. Aqueous methane in slit-shaped silica nanopores: high solubility and traces of hydrates. J Phys Chem C. 2014;118:4860–4868.10.1021/jp500081t
  • Sun H, Zhao H, Qi N, et al. Mechanistic insight into the displacement of CH4 by CO2 in calcite slit nanopores: the effect of competitive adsorption. RSC Adv. 2016;6:104456–104462.10.1039/C6RA23456A
  • Sun H, Sun W, Zhao H, et al. Adsorption properties of CH4 and CO2 in quartz nanopores studied by molecular simulation. RSC Adv. 2016;6:32770–32778.10.1039/C6RA05083B
  • Marry V, Turq P. Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites. J Phys Chem B. 2003;107:1832–1839.10.1021/jp022084z
  • Teich-McGoldrick SL, Greathouse JA, Jové-Colón CF, et al. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: comparison of temperature, interlayer cation, and charge location effects. J Phys Chem C. 2015;119:20880–20891.10.1021/acs.jpcc.5b03253
  • Rao Q, Leng Y. Methane aqueous fluids in montmorillonite clay interlayer under near-surface geological conditions: a grand canonical monte carlo and molecular dynamics simulation study. J Phys Chem B. 2014;118:10956–10965.10.1021/jp507884w
  • Zhai Z, Wang X, Jin X, et al. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy Fuels. 2014;28:7467–7473.10.1021/ef5023434
  • Zhang H, Cao D. Molecular simulation of displacement of shale gas by carbon dioxide at different geological depths. Chem Eng Sci. 2016;156:121–127.10.1016/j.ces.2016.09.002
  • Wang H, Wang X, Jin X, et al. Molecular dynamics simulation of diffusion of shale oils in montmorillonite. J Phys Chem C. 2016;120:8986–8991.10.1021/acs.jpcc.6b01660
  • Chang F-RC, Skipper N, Sposito G Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir. 1995;11:2734–2741.10.1021/la00007a064
  • Zhang L, Hu Z, Jiang J. Metal–organic framework/polymer mixed-matrix membranes for H2/CO2 separation: a fully atomistic simulation study. J Phys Chem C. 2012;116:19268–19277.10.1021/jp3067124
  • Rives S, Jobic H, Beale A, et al. Diffusion of CH4, CO2, and their mixtures in AlPO4-5 investigated by QENS experiments and MD simulations. J Phys Chem C. 2013;117:13530–13539.10.1021/jp4042827
  • Rappe AK, Casewit CJ, Colwell K, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035.10.1021/ja00051a040
  • Frenkel D, Smit B Understanding molecular simulation: from algorithms to applications. San Diego: Academic press; 2001.
  • Lu X, Jin D, Wei S, et al. Competitive adsorption of a binary CO2–CH4 mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale. 2015;7:1002–1012.10.1039/C4NR05128A
  • Chen Y, Yang R. Concentration dependence of surface diffusion and zeolitic diffusion. AIChE J. 1991;37:1579–1582.10.1002/(ISSN)1547-5905
  • Zhuo S, Huang Y, Hu J, et al. Computer simulation for adsorption of CO2 , N2 and flue gas in a mimetic MCM-41. J Phys Chem C. 2008;112:11295–11300.10.1021/jp803428n
  • Zhou J, Zhu X, Hu J, et al. Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane. Phys Chem Chem Phys. 2014;16:6075–6083.10.1039/c3cp55498h
  • Wu K, Li X, Wang C, et al. Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs. Ind Eng Chem Res. 2015;54:3225–3236.10.1021/ie504030v
  • Golebiowska M, Roth M, Firlej L, et al. The reversibility of the adsorption of methane–methyl mercaptan mixtures in nanoporous carbon. Carbon. 2012;50:225–234.10.1016/j.carbon.2011.08.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.