580
Views
21
CrossRef citations to date
0
Altmetric
Articles

Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

, , &
Pages 1523-1531 | Received 01 Jan 2017, Accepted 08 May 2017, Published online: 18 Jun 2017

References

  • Wu Y, Zhu W. Organic sensitizers from D–p–A to D-A–p–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performance. Chem Soc Rev. 2013;42:2039–2058.
  • Gong J, Liang J, Sumathy K. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev. 2012;16:5848–5860.10.1016/j.rser.2012.04.044
  • Hasan MA, Sumathy K. Photovoltaic thermal module concepts and their performance analysis: a review. Renew Sustain Energy Rev. 2010;14(7):1845–1859.10.1016/j.rser.2010.03.011
  • Hoppe H, Sariciftci NS. Organic solar cells: an overview. J Mater Res. 2004;19(7):1924–1945.10.1557/JMR.2004.0252
  • Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107(4):1324–1338.10.1021/cr050149z
  • Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem Rev. 2010;110:6595–6663.10.1021/cr900356p
  • Nashed R, Ismail Y, Allam NK. Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems. J Renew Sustainable Energy. 2013;5:022701.10.1063/1.4798483
  • Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev. 2013;42:3453–3488.10.1039/c3cs35372a
  • Li H, Chen M. Structure-property relationships for three indoline dyes used in dye-sensitized solar cells: TDDFT study of visible absorption and photoinduced charge-transfer processes. J Mol Model. 2013;19:5317–5325.10.1007/s00894-013-2024-4
  • Balanay MP, Kim DH. Computational study of absorption energies of organic sensitizers used in photovoltaic applications. J Phys Chem C. 2011;115:19424–19430.
  • Basham JI, Mor GK, Grimes CA. Förster resonance energy transfer in dye-sensitized solar cells. ACS Nano. 2010;4(3):1253–1258.10.1021/nn100422a
  • Lin Y-D, Chow TJ. Fluorine substituent effect on organic dyes for sensitized solar cells. J Photochem Photobiol A Chem. 2012;230:47–54.
  • Huang Z-S, Hua T, Tian J, et al. Dithienopyrrolobenzotriazole-based organic dyes with high molar extinction coefficient for efficient dye-sensitized solar cells. Dyes Pigm. 2016;125:229–240.10.1016/j.dyepig.2015.10.022
  • Yue H, Abate A, Cao Y, et al. High absorption coefficient cyclopentadithiophene donor-free dyes for liquid and solid-state dye-sensitized solar cells. J Phys Chem C. 2016;120(28):15027–15034.
  • Fuse S, Takahashi R, Maitani MM, et al. Synthesis and evaluation of thiophene-based organic dyes containing a rigid and nonplanar donor with secondary electron donors for use in dye-sensitized solar cells. Eur J Org Chem. 2016;2016:508–517.
  • Yue H, Robertson N. Atypical organic dyes used as sensitizers for efficient dye-sensitized solar cells. Front Optoelectron. 2016;9(1):38–43.
  • Zhang F, Yu P, Xu Y, et al. Theoretical investigation of regeneration mechanism of the metal-free sensitizer in dye sensitized solar cells. Dyes Pigm. 2016;124:156–164.10.1016/j.dyepig.2015.08.023
  • Song J, Xu J. Density functional theory study on D–π–A-type organic dyes containing different electron-donors for dye-sensitized solar cells. Bull Korean Chem Soc. 2013;34(11):3211–3217.10.5012/bkcs.2013.34.11.3211
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 suite of programs. Wallingford (CT): Gaussian Inc.; 2009.
  • Becke AD. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys. 1996;104:1040–1046.10.1063/1.470829
  • Becke AD. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys. 1997;107:8554–8560.10.1063/1.475007
  • Ernzerhof M, Perdew JP. Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys. 1998;109:3313–3320.10.1063/1.476928
  • Yanai DT ,Handy N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57.10.1016/j.cplett.2004.06.011
  • Tao JM, Perdew JP, Staroverov VN, et al. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91:146401.10.1103/PhysRevLett.91.146401
  • Raghavachari K, Trucks GW, Pople JA, et al. A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett. 1989;157:479–483.10.1016/S0009-2614(89)87395-6
  • (a) Marten B, Kim K, Cortis C, et al. New Model for Calculation of Solvation Free Energies:  Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects. J Phys Chem. 1996;100(28):11775–11788.;10.1021/jp953087x (b) Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem. 2003;24(6):669–681.
  • Bader RFW. Atoms in molecules. A quantum theory. London: Oxford Science Publications, Clarendon Press; 1990.; Cort’es-Guzman F, Bader RFW. Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coord Chem Rev. 2005;249:633–662.
  • Matta CF, Boyd RJ. The quantum theory of atoms in molecules. Weinheim: Wiley-VCH; 2007.10.1002/9783527610709
  • Keith TA. AIMAll (Version 11.04.03); 2011; [cited 2011 Oct 3]. Available from: http://aim.tkgristmill.com
  • Glendening ED, Weinhold FJ. Natural resonance theory: I. General formalism. J Comput Chem. 1998;19:593–609.10.1002/(ISSN)1096-987X
  • Glendening ED, Weinhold FJ. Natural resonance theory: II. Natural bond order and valency. J Comput Chem. 1998;19:610–627.10.1002/(ISSN)1096-987X
  • Glendening ED, Badenhoop JK, Weinhold FJ. Natural resonance theory: III. Chemical applications. J Comput Chem. 1998;19:628–646.10.1002/(ISSN)1096-987X
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592.10.1002/jcc.v33.5
  • Lu T, Chen F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model. 2012;38:314–323.10.1016/j.jmgm.2012.07.004
  • Nashed R, Ismail Y, Allam NK. Recent advances in the use of density functional theory to design efficient solar energy-based renewable systems. J Renew Sustainable Energy. 2013;5:022701. DOI:10.1063/1.4798483.
  • Ikehata H, Nagasako N, Kuramoto S, et al. Designing new structural materials using density functional theory: the example of gum metal TM. MRS Bull. 2006;31(9):688–692.10.1557/mrs2006.178
  • Wolverton C, Yan XY, Vijayaraghavan R, et al. Incorporating first-principles energetics in computational thermodynamics approaches. Acta Mater. 2002;50(9):2187–2197.10.1016/S1359-6454(01)00430-X
  • Vaithyanathan V, Wolverton C, Chen LQ. Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater. 2004;52(10):2973–2987.10.1016/j.actamat.2004.03.001
  • El-Amry A, Elroby SA, Kühn O, et al. Toward understanding tautomeric switching in hydroxynaphthaldehydes: Characterization of electronic absorption spectra. J Theor Comput Chem. 2015;14(5):1550033.10.1142/S0219633615500339
  • Wang Z, Huang Y, Huang C, et al. Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synth Met. 2000;114:201–207.10.1016/S0379-6779(00)00261-7
  • Xu W, Peng B, Chen J, et al. New triphenylamine-based dyes for dye-sensitized solar cells. J Phys Chem C. 2008;112:874–880.10.1021/jp076992d
  • Dvorak M, Wei S-H, Wu Z. Origin of the variation of exciton binding energy in semiconductors. Phys Rev Lett. 2013;110:016402.10.1103/PhysRevLett.110.016402
  • Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate. J Phys Chem. 1985;89(20):4207–4213.10.1021/j100266a013
  • Abu-Eittah R, Hilal R. Spectroscopic studies on some benzenethiols. Appl Spectrosc. 1972;26(2):270–277.10.1366/000370272774352335
  • Koyama Y, Kakitani Y, Nagae H. Mechanisms of suppression and enhancement of photocurrent/conversion efficiency in dye-sensitized solar-cells using carotenoid and chlorophyll derivatives as sensitizers. Molecules. 2012;17(12):2188–2218.10.3390/molecules17022188
  • Wang Z, Huang Y, Huang C, et al. Photosensitization of ITO and nanocrystalline TiO2 electrode with a hemicyanine derivative. Synth Met. 2000;114(2):201–207.10.1016/S0379-6779(00)00261-7
  • Zhang C-R, Liu L, Liu Z-J, et al. Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: a theoretical approach. J Mol Graph Model. 2012;38:419–429.10.1016/j.jmgm.2012.09.004
  • Lin Y-D, Chow TJ. Fluorine substituent effect on organic dyes for sensitized solar cells. J Photochem Photobiol, A. 2012;230:47–54.10.1016/j.jphotochem.2011.12.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.